
IT UNIVERSITY OF COPENHAGEN
Bachelor Project Spring 2020

Digitisation of Elections

Oblivious transfer in voting protocols

Supervised by: Bernardo Machado David & Carsten Schürmann

AUTHORED BY:

International Democratic Girlscouts Workers Party of ITU
Sebastian N. Behrndtz . sbeh@itu.dk
Oliver E. Astrup . olas@itu.dk

mailto:sbeh@itu.dk
mailto:olas@itu.dk

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

Contents

1 Introduction 3

2 Digital voting 4
2.1 Trust . 4
2.2 History . 5
2.3 Digital voting in Norway . 6
2.4 Constraints and problems . 7

3 Technologies 9
3.1 Oblivious transfer . 9
3.2 Efficient composable oblivious transfer . 9

3.2.1 With selective failures . 10
3.2.2 Without selective failures . 11

3.3 Elliptic curve cryptography . 13
3.4 Bouncy castle . 13
3.5 Java . 14

4 CHVote 15
4.1 History of CHVote . 15
4.2 Overview of the protocol . 15

4.2.1 Parties . 15
4.2.2 Phases . 16

4.3 The voting card . 17
4.4 How CHVote makes use of oblivious transfer . 18

5 Implementation 19
5.1 Architecture . 19
5.2 Overview of the combined systems . 19
5.3 Receipt generator . 21

5.3.1 Cryptosystem . 22
5.3.2 Client . 25
5.3.3 Server . 28

5.4 Voting simulator . 31
5.4.1 Ballot box . 31
5.4.2 Voter . 32
5.4.3 Descryption service . 32

5.5 Test strategy . 32
5.5.1 Unit testing . 32
5.5.2 Integration testing . 33
5.5.3 System testing . 33

5.6 Running the program . 33

6 Discussion 35
6.1 Physical card verification vs. computer only verification . 35
6.2 Verification on the used device vs. another device . 36
6.3 Authentication . 36
6.4 Problems with communication . 37

Page 1 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

6.5 Network security . 37
6.6 Performance and bottlenecks . 38
6.7 The problem with building trust . 39

7 Conclusion 40

References 41

A Glossary and Acronyms 43

Abstract
Digitisation of elections comes with at lot of problems, from security to trust in the digital solution. How can a voter
trust that their vote has been correctly submitted and how do we securely give the voter this kind of confirmation,
without the system knowing what was voted? The problem is old, but the digital setting is new. Voting with ballots
has not changed a lot over the year. We have added anonymity, but the basic premise remains the same, even when
utilising digital solutions.

In this paper we will explore the history of voting and examine the experiences from Norway and Switzerland with
digital voting systems. We will also discuss a potential solution to the problem regarding submitting votes as stated
above. We suggest that the problem can be solved by utilising Oblivious Transfer (OT) and we have implemented a
prototype system as proof of concept based on the Efficient Composable Oblivious Transfer (ECOT)

Based on our results and the experiences from Switzerland, we believe that OT could be part of the solution, but it
cannot stand alone. Several problems still remain and having a secure system does not guarantee a voter’s trust, which
is paramount for a system to be successful.

Page 2 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

1. Introduction
Digitalisation has been a buzzword for quite a few years now, and the digitisation of our society leads to
a lot of interesting possibilities - among them the election processes in our democratic systems. Digital
voting have several advantages, from improved vote counting and the possibility of sharing results faster
to I-Voting. By using electronic voting machines, computers or other medias for voting, we can make the
act of voting easier for people who suffer from different disabilities such as visual impairments, physical
impairments etc. and thereby improve their ability to exercise their political rights [16]. Another aspect
of digital voting is the prospect of making Direct Democracy feasible or using the system to more easily let
citizens weigh in on important matters.

Experimentation with I-Voting has been going on for several years in eg. Estonia, Namibia, Norway and
Switzerland [3] [16] [31] [26] and their experience shows us that, even though there are a lot of possibilities,
several problems arise, for example with security, trust and ensuring anonymity of the voters.

One of the recurring issues is to ensure the voter’s confidence in the vote they just cast. If a voter does
not have confidence in the correctness of the digital vote, it does not matter how smart and secure it is.
Either the voter will not make use of the digital solution, or worse, it could even damage voters’ trust in the
democratic system in general. When utilising digital solutions to vote online, how can we ensure that the
voter’s vote is counted correctly, that the voter can only vote once and finally give the voter confidence that
the vote is counted correctly? While ensuring these things, the digital solution must also ensure the voter’s
anonymity and that the system is strong against coercion from a third party. And last, but not least, how do
we ensure a voter’s trust in the system and that it actually does what it is intended to do?

In this paper we intend to highlight the issue concerning "voter’s confidence in the correctness of their vote"
and look at a potential way of solving it. Our general idea is to give the user feedback on their voting so
that they will know that they cast their vote successfully and that they voted for whom they intended. To
do this we are proposing to make use of OT to generate a receipt as part of the voting process.

We will start out by trying to create a common understanding of what digital voting is in chapter 2,
by taking a look at the historical perspective of voting with ballots, the experiences from the Norwegian
trials with I-Voting and finally looking at problems and constraints. The technologies we intend to use for
our proposed solution, will be introduced in chapter 3. We will also take a closer look at the discontinued
project CHVote in chapter 4 and how they used OT in their I-Voting solution. As proof of concept we have
implemented a prototype receipt generator using an OT protocol. The implementation details can be seen
in chapter 5. Finally in chapter 6, we will discuss the results of our implementation and our thoughts on the
solution. This will be followed by our conclusion in chapter 7.

Page 3 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

2. Digital voting
In this paper we refer to digital voting instead of Electronic Voting. Firstly to differentiate between "digital"
and "electronic". According to the Cambridge dictionary "digital" can be defined as: recording or storing
information as a series of the numbers 1 and 0, to show that a signal is present or absent, [10] and "electronic" can
be defined as: (especially of equipment), using, based on, or used in a system of operation that involves the control of
electric current by various devices, [11]. The important factor here is the focus on storing data, since this is an
important aspect of I-Voting. Secondly Electronic Voting includes both E-Voting and I-Voting which are very
different things.

Since we are discussing a full digital solution, where every part of the process is digitised and using the
internet, a more precise wording would be Digital Remote Voting (DRV). But why would we even want to
have a DRV process?

We have already mentioned some of the reasons in chapter 1, and to reiterate and expand on them, we
find the main advantages are:

• Improved and faster vote counting and sharing.

• Voting will become more accessible, especially in rural areas with long and/or difficult transport
routes to the nearest polling station.

• A faster process for the voter by avoiding unnecessary queuing and travel time, making it more
attractive to vote.

• It will be easier for people with visual impairments, physical impairments or other disabilities to
exercise their political rights.

• Elections will be easier to facilitate, since fewer people are involved directly in the process.

• It can pave the way for Direct Democracy and make it easy for politicians to include voters’ opinions
on specific topics.

In short, DRV could increase participation and make participants more involved in politics through
better inclusion or even Direct Democracy.

In the following sections we explore the concept of trust in section 2.1 and how it is important for DRV, and
give the reader a a brief overview of the history of voting using ballots, see section 2.2, and how voting has
evolved over the years. This is followed by section 2.3 where we look at how DRV has been used in Norway
and what we can learn from their trials. Finally we take a short look at constraints and possible problems
that can arise with DRV in section 2.4.

2.1 Trust

How do we define trust? According to the Cambridge dictionary, trust can be defined as,

"to believe that someone is good and honest and will not harm you, or that something is safe and reliable", "to hope
and expect that something is true", "the belief that you can trust someone or something" or if we take the American
version as, "to have confidence in something, or to believe in someone", "to hope and expect that something is true"
- [12]

From this, it can be gathered, that the absence of trust, results in distrust in something, we believe it is
bad, with ill intent and wishes to do harm. In a world without trust, the world can be presented like this:

Page 4 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

"We would never enter a taxi, never pay with coin or believe in what our doctor says. Furthermore, we would not
know when and where we are born and might even still believe that the sun rotates around the earth." - [34]

In relation to democracy and voting; We assume, if voters do not trust in the election, their participation
will decline. If people trust in something, they are willing to work with it and accept the results. If they do
not trust in something why should they make use of it or believe the results?

So why is this important? If we look at democracy as a machine, trust is one of the important cogs
for making it run. Trust influences the participation of people and a democracy’s legitimacy depends
on people’s participation. When the legitimacy falls, people might perceive election results as wrong
or manipulated. This can result in making especially minority groups in society feel suppressed and
misrepresented and thus lead them to opt out of society [40]. As such, the result might lead to the voter’s
feeling of having political opponents elected going from "I did not vote for you!", to "the majority did not vote
for you!", an thus undermine the official authority, whether this is the truth or not.

A lack of trust can undermine the entire democratic system. Why follow our elected leaders if we do
not believe in the system that placed them there as leaders? Trust is essential for the cogs of democracy
to keep turning. Furthermore democracy is one of the cornerstones of the western world. If one of these
cornerstones breaks down it could greatly influence our society. It might lead to deep rifts between groups
of people, create instability, hurt the economy, lead to civil unrest or worse.

2.2 History

Voting dates back many years and has taken several forms, from the simple show of hands, voting with
ballots, remote voting, secret ballots and today both E-Voting and I-Voting. Some of the earliest laws for
voting with ballots, can be dated back to at least 140-130 B.C [41]. The process from back then, is very close
to how voting is done today, with the exception of secrecy:

"The mode of voting from this time forward was as follows: As the voters entered the booths they were
given ballots (tabellac). These ballots differed according to the subject under discussion ; if the vote to
be taken was on some law the tablets were marked VR (uti rogas) and A (antiquo); if the assembly was
gathered for an election, the tablets were plain, and the voters inscribed on them the name of the candidate
for whom they wished to vote. Each citizen as he passed out of the booth of his voting unit deposited his
ballot under the supervision of tellers (rogatores) and watchers (custodes) in baskets. When the voting
was completed the baskets were carried off to some special place called the diribitorium, where they were
emptied. Here the ballots were sorted and counted, and the results recorded. When this was done the
result was announced [...]"

- Wolfson [41]

An early form of remote voting was postal voting, which can be traced back as far as the Roman Empire
[6]. This type of voting is still in use today. More recent examples of remote voting includes telephone,
FAX and internet and nowadays we can even vote from space, which was done in 1997 by an American
astronaut [17].

Secret ballots are taken for granted in western democracies today and was first introduced in 1848 in
France and in 1872 in Britain [8]. They weren’t completely secure until 1913 with the addition of polling
booths and envelopes.

Today secret ballots are the norm in the western world, but apart from that the process is still very
similar to that of the ancient Greeks, which becomes very visible if we compare it to the current Danish
system. According to the official homepage for the Danish parliament [13], parliamentary elections are done
in the following way:

Page 5 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

"On election day, everybody who is entitled to vote in a general election can go to one of the polling
stations located throughout Denmark and cast their vote. Voters will receive a poll card by post well
in advance of the election day. The poll card will tell them where and when to vote. On election day,
polling stations will have been established throughout the country, usually at town halls, schools and
sports centres. Returning officers are responsible for overseeing that elections are conducted according to
the rules. They also count the votes afterwards Voters hand in their poll cards at the polling station and
receive a long ballot paper listing the names of the parties and the candidates running for election. The
ballot is secret and votes are cast in polling booths so that nobody can see for whom people vote. Voters
can put a cross either beside the name of a person or a party. [...] When the polling stations close, the votes
are counted and the 175 seats can be distributed."

It is clear that the core act of ballot voting has not changed a lot over the last two millennia: We have added
secrecy and are a bit more explicit in the description, but apart from that, it is the same process and it still
works. This means we can have a high degree of confidence in the system and that the weaknesses that the
system might have can be accounted for.

2.3 Digital voting in Norway

The voting process in Norway [32] is very similar to the one used in Denmark, with the exception of being
able to split up ones vote. The splitting of a vote in the Norwegian voting process, makes it possible to vote
on more than one candidate. Norway initiated trials for DRV in 2011, which was discontinued again in
2013 [31]. In the following subsections we will describe the system itself and what we find to be the most
relevant takeaways for our system.

Simplified protocol

Figure 2.3.1: Communication between parties in the Norwegian protocol.

The parties communicate as shown in Fig. 2.3.1, and in this simplified version the ballot box knows which
voter is communicating through the computer. The voter chooses a ballot, based on his choices from the
given set of options, which the computer then encrypts using the election encryption key. This encrypted
ballot is transferred to the ballot box, which then generates a receipt in cooperation with the receipt generator.

Page 6 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

The receipt is sent directly to the voter, who can now check if the codes corresponds to the choices made. If
the receipt codes match the choice, the voter accepts and otherwise the voter will know that something is
wrong.

When the ballot box closes, all the encrypted ballots are transferred to the decryption service, which
decrypts the ballots and publishes the result.

The auditor receives input from the ballot box, receipt generator and decryption device. This is used to
verify the different parts of the process. Should the verification fail, the election will be cancelled.

Security goals

According to Kristian Gjøsteen [18], four security goals can be identified. As might be obvious, every voter
can only vote once, so only one vote per voter must be counted. If the computer used to submit the vote
is honest, the vote must remain confidential, unless the information is leaked through receipt codes. The
auditor will not cancel the election if no infrastructure parties are corrupt. Lastly - if the auditor does not
cancel the election, the votes cast by honest voters must be counted, unless the voter submits a new ballot or
complains about forgery.

Trust

Trust is a major factor of elections [23] and even more so in DRVs, see section 2.1 for more details. In the
Norwegian protocol, several steps are taken to improve voters’ trust in the system.

The authentication service is based on MinID, which is a well-established service for authentication. The
authentication system has been used for some time now and has this far proven itself to be safe [37]. This
improves the users trust by "borrowing" the credibility of MinID and ensuring a higher level of confidence.
Another step is a high level of transparency, where documents describing guidelines, responsibilities and
the administrative context can be accessed publicly through the project website, along with the source code
[37].

Compromised computers

Since many computers are compromised, users will have to detect ballot tampering themselves. This is
very difficult, especially since the average voter will not be able to do even simple cryptography, especially
without computer assistance [18].

Coercion

Another big problem, that no amount of cryptography can alleviate, is coercion. To combat this, the protocol
allows the user to vote several times, with the last vote being the one counted. By allowing re-voting, a
potential coercer can never be sure if the coercion worked and thus, this assists honest voters in actually
voting as they want. On top of this, the voters are also allowed to vote once using a paper ballot, which will
always be counted instead of any digital votes given [18].

2.4 Constraints and problems

There are many constraints related to a DRV, as is evident from the above sections, both as a result of the
voting process itself and of the security perspectives and laws of the country in which the voting takes
places1. For the security part, as already mentioned above, there are also lots of other things to consider,
like Denial of service attacks, viruses, physical attacks, privacy and many more [1]. To stay focused on this
paper’s main subject, "receipt generation with OT", we will focus on the constraints and problems specific to
this part of the system, and we find the following:

1Which we have made a conscious choice not to go into.

Page 7 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• Receipts can be used as proof of one’s vote, making it easier to sell the vote or to ensure coercion is
successful.

• Since the receipt is digital, it gives an adversary an additional way to potentially find out what people
vote.

• If the system itself is malicious, it may be possible to learn what all voters vote thereby removing
anonymity.

• Every vote needs to be stored along with user details, so voters can change what they vote. This must
be done without anyone else being able to figure out, what any individual’s vote is.

Page 8 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

3. Technologies
To implement receipt generation using OT, we use several technologies and intend to give the reader an
overview of the most important ones in the following sections. First of, in section 3.1 we explain what OT
is and then describe the specific OT extension we intend to use in section 3.2. In the implementation we
will make use of Elliptic Curve Cryptography (ECC), which we will give a short overview of in section 3.3.
For the actual security implementation we will make use of the open source Library Bouncy Castle (BC).
Details about this can be found in section 3.4. The program itself is coded in Java and a short description of
important uses from the language can be found in section 3.5

3.1 Oblivious transfer

OT is an important building block in cryptography and can be used for the construction of secure protocols
[20]. OT is a protocol between two parties, Alice as the sender and Bob as the receiver. The objective is for
Bob to receive and read one or more messages from a range of messages given by Alice, without Alice being
able to gain knowledge of what message(s) Bob has chosen. Bob should also only be able to read messages
he has chosen and no others [19].

A simple version of this is called the 1-out-of-2 OT, and is defined as ((x0, x1), σ) 7→ (λ, xσ) where λ is
the empty string. In this protocol, Alice has two different messages x0 and x1 and Bob has a single bit σ,
that is his choice, so this can be 0 or 1. Then the purpose of the OT protocol is for Bob to receive and read xσ,
without Alice knowing the value of σ [20].

Another more complex version is called the k-out-of-n OT, which in many ways works the same way as
the 1-out-of-2 protocol. In this protocol, Alice has n messages instead of two (x0, x1, ..., xn). Bob can chose k
messages, where it holds that k ≤ n, which he can open and read. It is important to note that the messages
Bob chooses, do not have to be in sequel. And like the 1-out-of-2 protocol, it should hold true that Alice
does not know any of the k values that Bob has chosen, and Bob is not able to open and read messages that
he has not chosen [19].

A combination of the two is also possible and would be called 1-out-of-n OT. It would be close to the
k-out-of-n protocol, where Alice has (x0, x1, ..., xn). The difference here lies in Bob only having a single
choice σ, and only receives xσ, without Alice knowing what σ is.

3.2 Efficient composable oblivious transfer

The ECOT is an OT protocol constructed by Bernardo David and Rafael Dowsley [9]. This protocol is
Universally Composable, secure against active static adversaries based on the Computational Diffie-Hellman
Assumption and proven to be secure in the Global Random Oracle Model. Two versions are described in their
paper, one with selective failures and one without.

It builds on the 1-out-of-2 OT, described in section 3.1, where Bob has two different choices: c0 or c1.
Depending on his choice, he will receive a corresponding message from Alice without Alice having any
knowledge of what message Bob has chosen.

In subsection 3.2.1 we first describe the protocol extension with selective failures and then in subsection
3.2.2 we describe the one without. We have made use of a shortened version of the protocol, courtesy of
Bernardo David, where we handle session id and randomness (R) differently from the original paper. In our
version, session id is part of the underlying communication and the randomness is derived from p in the
encryption scheme. The following shorthand’s is used in the subsections:

• RANDOM - A random generator

Page 9 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• k - The security parameter

• HKey, HCh, HPad - Different hashing algorithms

• x - Can be both 0 and 1 (eg. px means p0 and p1)

• c - The choice of 0 or 1

• ENC - An encryption algorithm

• DEC - A decryption algorithm

3.2.1 With selective failures

The following sections describe the protocol with selective failures, which is vulnerable to a malicious Alice,
that has a 50% chance of guessing Bob’s choice without alerting Bob. For a description of the protocol
without selective failures see chapter 3.2.2.

Key pair generation

At the start of this protocol, Bob generates a Key Pair (pkc and skc), that corresponds to his choice (c) and
will be used in the encryption of his vote. With a Key Pair Bob is able to send a Public Key to Alice, which she
can then use to do encryption that only Bob can decrypt.

Bob also needs to generate a Public Key without a corresponding Secret Key, to obscure his choice from
Alice. This is achieved through the following equations:

s = RANDOM(k) (3.1)

q = HKey(s) (3.2)

pk0 ? pk1 = q (3.3)

By using equation (3.3), Bob creates the new Public Key that is related to the Public Key in his Key Pair1, and
makes it infeasible to calculate which one is from the Key Pair and which is not. To obscure Alice, Bob will
always send her pk0 and s. She can then calculate pk1 using (3.1), (3.2) and (3.3), but she will not know
which key has a corresponding Secret Key.

Challenge

After the Key Pair generation, Alice creates a Challenge for Bob, so that they are able to exchange two secrets
(p0 and p1) which are randomly generated by Alice. This challenge makes it possible for Bob to receive the
secrets, which will later be used to encrypt his message and at the same time validate him as the correct
recipient. Alice will generate a challenge using the following equations:

p′x = HCh(pkx, px) (3.4)

p′′x = HCh(p′x) (3.5)

ch = p′′0 ⊕ p′′1 (3.6)

1eg. If Bob’s choice is 0, then his Public Key from the Key Pair is pk0, and he generates pk1

Page 10 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

She will then encrypt her secrets using the Public Keys that she received and calculated in the Key Pair
generation.

ENC(pkx, px) (3.7)

Alice can now send the challenge and the two encrypted secrets to Bob, since he only has the Secret Key
for the secret corresponding to his choice, using the following equation:

pc = DEC(sk, ENC(pkc, pc)) (3.8)

Using equations (3.4) and (3.5), Bob is able to calculate p′′c which should be identical to the value
calculated by Alice. Using this value, Bob is able to calculate p1−c using equation (3.6):

p′′1−c = ch⊕ p′′c (3.9)

Bob still needs to obscure his choice to Alice and does this by always responding to her challenge with
the value of p′′0 . Therefore he will only make use of equation (3.9), when his choice is 1. To do this he makes
use of a modified version of (3.9) equation that will always calculate to p′′0 :

chr = p′′c ⊕ (c · ch) (3.10)

Using this value as a response to her challenge, Alice can now verify that chr = p′′0 . If the verification
succeeds, she will know that he was able to decrypt one of her secrets and calculate a valid response, which
means Bob is the correct recipient. If the check fails, Alice will abort.

Sending the message

With a valid Challenge response, Alice can now send her messages (m0 and m1) to Bob. She encrypts them
using her own generated secrets with the following equations:

p̃x = HPad(pkx, px) (3.11)

m̃x = p̃x ⊕mx (3.12)

Alice then sends the encrypted messages m̃0, m̃1 and the values calculated in (3.4) for p′0 and p′1 to Bob.
Bob then verifies that the p′c value received from Alice corresponds to the one he calculated earlier using
equation (3.4). He also computes p′′1−c using equation (3.11) and then uses (3.6) with p′′1−c and p′′c to verify
that this ch corresponds to the previously calculated one. If any of these verifications fail, Bob aborts.

After validation, Bob is able to use equations (3.11) and (3.12) to calculate the messages, and since he
only knows pc and not p1−c he is only ever able to decrypt one of the two messages sent by Alice.

3.2.2 Without selective failures

This version of the protocol protects Bob against a selective failure attack from Alice, so that Bob’s choice
stays hidden. This chapter will closely resemble chapter 3.2.1, as many of the equations are used in both
protocols. However, this protocol has additional equations after the challenge is resolved.

Key pair generation

The key pair generation is almost identical to the one used for selective failures. The only change is that
Bob’s choice (c) is not used. Instead Bob generates a random bit c′ to use instead of c.

Page 11 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

Challenge

The Challenge generation and response is identical to the challenge with selective failures. In addition to the
challenge, Alice also generates the two random values p̂0 and p̂1 which she encrypts using (3.7) and sends
to Bob with the encryption of p0 and p1.

Sending the message

When the Challenge response is verified by Alice, she computes two random messages (m̂0 and m̂1) of the
same length as the real messages, that she needs to send to Bob. Using (3.11) and (3.12) with these random
messages along with p̂0 and p̂1 she is able to create the two messages to be sent to Bob along with the values
of p0 and p1.

When Bob receives these values from Alice, he is able to verify her by using (3.7) with p0 and p1 and
compare them to the values that he received from her for the challenge. He then verifies her values by using
p0 and p1 to recreate the challenge using equations (3.4), (3.5) and (3.6) and compare if this challenge is
identical to the one he received from Alice.

If all verifications are complete without problems, Bob is able to decrypt the random messages sent by
Alice. By decryption of p̂c using equation (3.8), he is able to replicate (3.11) and (3.12) and get the values of
m̂c. As in the previous protocol, Bob is still only able to decrypt one of Alice’s values because he only has
the secret key for one of them.

To get the messages from Alice, Bob computes the value d, using the following equation:

d = c⊕ c′ (3.13)

Since c and c′ are bit values, the value of d can be calculated using the following matrix:

⊕ 0 1

0 0 1

1 1 0

Bob then sends his d value to Alice. She then encrypts her messages with her random message using the
following equations, which she sends to Bob:

m′0 = m̂d ⊕m0 (3.14)

m′1 = m̂1−d ⊕m1 (3.15)

When Bob receives these values from Alice, he is able to compute mc using the following equation:

mc = m′c ⊕ m̂c (3.16)

Since Bob is only able to gain the knowledge of m̂c and not any knowledge of m̂1−c he is not able to use
(3.16), to compute m1−c. He can therefore only get the value of mc, which is the message equal to his choice.

Page 12 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

3.3 Elliptic curve cryptography

ECC is a technique to generate secure encryption keys which are short when compared to other well used
techniques like RSA and Diffie-Hellman, while still keeping the same level of security. Especially for sites
that conduct large amount of secure transactions, ECC can be very useful, since a reduced key length will
directly reduce the processing needed for each transaction [35].

The implementation of this protocol should work with any elliptic curve, and in our implementation we
have used the secp256r1 curve. This curve is NIST-approved and can be used in both TLS and SSH protocols.
Working with the curve is faster than comparable methods, without compromising security [21]. However,
we must take into consideration that ECC has not been around for as long as other techniques like RSA and
might still contain undiscovered flaws or backdoors that have yet to be discovered [35].

ECC builds on the mathematical concept of elliptic curves. However, a description of this it out of scope for
this paper.

3.4 Bouncy castle

Since we are not security experts, we make use of the BC Library to lower the risk of security problems
in the protocol. By relying on a Library created by security experts who have been providing a free and
open-source Library for almost 20 years [22], we can be more confident in our solution. The Library has been
implemented to support the Java and C# programming languages.

The Library contains many different security protocols and elements and in our project we have made use
of the Library for implementing our hash functions and elliptic curves. Details can be seen in the following
subsections.

Hash function

For hashing elements in the protocol, we make use of the SHA3-256 algorithm provided by BC. It operates
as a one-way hash function, which takes any length input and provides a 256 bit output. The produced
output will always be the same when given the same input, but it will be infeasible to get the input from the
output.

BC offers a plethora of hash functions, ranging from SHA-1 to SHA3-512, and one could argue that using
the SHA3-512 would be more secure than the chosen SHA3-256. However, a longer hash function also
results in longer computations and bigger packets to be sent over the network. In this protocol, we also
make use of ECC that allows for lower key lengths and therefore we will not need long hash values, since
our keys are already short and secure. Another reason is that in a real voting protocol, with lots of people
voting at the same time, a reduction of computation time would be beneficial for the users, as they will get a
faster response from the server.

Elliptic curve cryptography

We make use of BC to do all operations related to ECC, like addition, subtraction and scalar multiplication.
The Library also allows us to turn points on the elliptic curve into binary strings and to create points from
binary strings. As mentioned in section 3.3, we make use of the secp256r1 curve. This can be changed at any
time by instantiating the program with a different curve, without changing any code.

All this mitigates the risks when trying to implement an elliptic curve, as the underlying mathematical
calculations are very complex. With this Library we can be confident that the underlying mathematical
calculations are done correctly and focus on aspects we are good at.

For more about ECC read section 3.3.

Page 13 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

3.5 Java

The protocol is implemented in the Java programming language. We choose to use Java because BC as
explained in section 3.4 is available for Java and C#, and we have more experience with Java in general. The
following subsections will describe some of the technologies we have used from the Java Library.

Secure random

The protocol currently makes use of the Secure Random implementation supplied by Java’s standard
security Library. This random implementation makes use of the underlying operating system to generate a
Seed for the random generator. This is in contrast to other non-secure random generators’ implementations,
which often make use of the current time for randomness. The Secure Random uses process and thread id’s,
keystrokes, etc. at the time of the Seed generation, making it infeasible to guess or recreate the Seed [29].

Mockito

For creating our unit tests, we have made use of the Mockito Library to mock interfaces. Mockito is a
framework created for mocking and assisting with clean, simple and readable tests [25].

Page 14 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

4. CHVote
Remote voting has been used in different countries in the last decade, one of these is the country of
Switzerland, which has developed its own voting protocol called CHVote. This chapter is dedicated to
studying the protocol, with section 4.1 explaining a brief history of the protocol and where it comes from.
Then section 4.2 will explain some of the key elements of the protocol, handling what parties are involved
and what phases are in an election. This is then followed by section 4.3 that is a brief explanation of the
voting cards involved in an election, since they are an integral part of both creating trust and limiting the
power adversaries. Since our work revolves around an OT protocol, section 4.4 will explain how OT is used
in CHVote.

This chapter is written primarily using the paper "CHVote System Specifications - Version 3" from Bern
University [19]. This paper is an extension of the CHVote 2.0 system that was developed earlier in a
collaboration between the state of Geneva and Bern University but was discontinued in 2018. Therefore this
version is developed independently by Bern university and is not currently in use by the Swiss state.

4.1 History of CHVote

The CHVote project started back in 2001, where the State of Geneva started developing the building blocks to
implement a DRV system for its citizens. This resulted in several referendums to allow for DRV and resulted
in the 2009 constitutional provision that was approved by a 70,2% majority, which made is possible to use
DRV in Switzerland. The first version of the CHVote system did get its fair share of criticism, mainly from its
lack of transparency and verifiability and due to the Insecure platform problem. Inspired by the Norwegian
DRV project from 2011-13, where both high transparency and verifiability was achieved, an evolution of
CHVote began, resulting in CHVote 2.0 in collaboration with Bern University in 2016. This collaboration
aimed at adjusting the problems of the earlier protocol. However, in 2018 the state of Geneva stopped the
project, and released the source code to the general public [14].

4.2 Overview of the protocol

This chapter will give an overview of two key elements in the CHVote protocol: Firstly, the different parties
involved in the election. Secondly, a description of each of the 3 phases that the protocol has to go though to
successfully complete a full election.

4.2.1 Parties

The CHVote system consists of 5 different parties/entities that all need to collaborate to ensure the success
of the election. In this section we will briefly explain each of them and what their roles are in the protocol.

Election administrator

The administrator is the start and the end of the election. They are responsible for setting everything up
correctly, so that the election authorities can do their job. This involves elements such as: Creating elections,
adding candidates to elections and adding voters that are eligible to the elections. Then when the election is
finished, it is the administrator who will tally the votes from the election authorities and publish the result.

Election authorities

The election authorities are used to ensure the integrity and privacy of the voters. They generate voting cards
and the public key used for vote encryption. During the vote they are responsible for all vote confirmations,

Page 15 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

validation and submissions, and after they are responsible for mixing, tallying and verification. Overall they
are a integral part of the system, and if all of them become corrupted then the system is broken. Therefore
a lot of trust needs to be placed in these authorities, and a system always need at least one not corrupted
authority, who can tell if others have become corrupted.

Printing authority

The printing authority is only used in the setup of the system, however, it is important that this authority is
trusted. The printing authority is responsible for the printing of the voting cards described in section 4.3.
These cards contain all the information that is needed for a vote to be valid and therefore a corrupt printing
authority could vote on behalf of a voter in an election.

Another part of this process is the transportation of the cards from printing to voter, this process will
likewise need a high level of trust to work.

Voting client

The voting client is the machine that the voter uses to cast their vote. It could be anything from a phone
to a computer. The important thing is that voting clients can be infested by a malicious opponent, and
can therefore not always be trusted, and it would be infeasible to be able to detect opponents in all voting
clients. To counteract this CHVote makes use of the voting card, as it would be almost impossible for an
opponent to try and guess the randomised values on a physical the voting card. It is also important to have
a strong voting client, as it has to do several cryptographic computations and have communications with
the election authorities.

Voter

The voter is the user that wants to make use of the system. They make use of the voting client to cast their
vote and use the voting card to validate and confirm their vote.

4.2.2 Phases

An election in CHVote consist of three different phases: Pre-election, Election and Post-election. Each phase
needs to be complete in order to complete a full election using CHVote and each contains a small list of
subphases that also need to be completed in the right order.

Pre-election phase

This phase is necessary to set up an election and prepare it for the voters and ensure that they are able to
actually vote in election. This is done using the voting cards generated during this phase. All communication
in this phase is mainly between the election administrator and the election authorities and is the only phase
in which the printing authority is involved.

The phase starts by election preparation where all voting cards are generated by the election authorities
and all public credentials are saved so they can be used to identify voters during the election phase.

After the generation of the voting cards, the printing authority needs to start printing the voting cards.
This is done by sending all voting cards from the voting authorities to the printing authority using a secure
channel using symmetric encrypting. However, the rest of the printing relies on trust, since the voting cards
contain secret information that could be used by others to vote on behalf of a voter. Therefore both printing
authority and the delivery methods from print to voter need to be trusted and secure.

The last part of this phase is key generation, since each voter needs to encrypt their vote using a Public
Key. This key is generated between all the election authorities, where they share their public keys, but
keep their secret keys. When the votes needs to be read, each election authority will use their secret key, to
decrypt part of the vote.

Page 16 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

Election phase

The election phase is the core of the protocol. It is in this phase that the voters can cast their votes, and the
system needs to make sure that votes are valid, while being able to keep voter anonymity ans also being
able to verify that votes are correct. For each voter, there are three distinct steps to go though in this phase.
What is important in this phase, is that it is all or nothing; if anything goes wrong during a vote, then the
vote session aborts and needs to be started again.

The first step is the Candidate Selection step. This is the most simple step as the voter gets all the
candidates that they are allowed to vote for in the elections, and makes their decisions. Many of the
parameters for this step are already handled during election preparation by the election administrator.

The second step is the Vote Casting step. Here the voting client encrypts the voter’s selections, and
sends them to the election authorities, who need to both confirm that the ballot is valid and that the voter is
allowed to vote before responding with the correct verification codes, so the voter knows that their selections
are what is being tallied later.

The last step is the Vote Confirmation step. The voter only ends here when the verification codes from
the previous step are correct. The voter uses this step to confirm to the voting authorities that their vote was
correct and then receives a last code to make sure that everything is correct. The voting authorities then
need to save the vote so it can be tallied, but also save the voter to make sure the voter doesn’t vote again.

Post-election phase

The post-election phase is the last phase in the protocol. It is only run once when the election is over and the
main focus of this is the tallying of the election result. However, we also need to make sure that no vote is
able to be backtracked to a specific voter.

The phase starts with a cryptographic mixing. This is important, since it removes the link between a
voter and their vote. The mixing is done by each election authority in turn, by shuffling the votes, before
handing the votes to the next authority. After the mixing is completed, the decryption of the votes begin.
This is again done by each of the election authorities in turn, so that after decryption each authority sends
their partial decryption to the election administrator. With the partial decryptions from each authority, the
election administrator is able to obtain the decrypted plaintext of each vote and then tally the result of the
election. When the tally is complete, the administrator will publish the result.

After this there is an optional subphase called inspection. This is where voters can inspect the result
and their votes to ensure that the election was run correctly. The subphase is optional, since it is not needed
for the election, but it is there to build up trust that the election was correct. During the inspection, all the
election authorities publish their relevant finalization and abstention codes, which each voter can use to
check against their own voting card.

4.3 The voting card

The CHVote protocol makes use of voting cards. These are used by the voters to validate their vote in a
given election. It contains a lot of different codes, as show in figure 4.3.1, and all the codes are secret and
used for different purposes throughout the protocol. The small codes next to each question/election are
Verification codes. The user will use the codes to check against the response they received, to see if they are
correct. The codes are written using a base 16 system, giving the system 65.536 unique verification codes.
The Voting code is used to identify the voter. However, the code is never used directly. Instead your public
identification can be derived by the voting client using the voting code. The Confirmation code is used
during vote confirmation. Here voters respond to the verification codes with their confirmation code to tell
the election authorities that the codes were correct. Like with the voting code, the Confirmation code is
never sent directly, instead the response is derived from this code. The Finalization code is the final code
used during vote confirmation, and is only shown to the voter by the voting client. The voter can then

Page 17 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

respond if the code matches the code they have on their voting card and when an election is completed, all
Finalization codes are published.

The Abstention code is a different from the other codes, as it is not used directly in the protocol. Instead,
if the voter decides not to vote at all. Then when the election is over, they will be able to find their abstention
code on a public list and can verify that their vote was not used in the election.

Figure 4.3.1: An example of a CHVote Voting Card, that contains validation codes for 3 different elections. It
contains a plethora of different codes, that is needed for the completion of the protocol. - [19] p. 14

4.4 How CHVote makes use of oblivious transfer

It is only during the Election phase of the CHVote protocol that OT is utilised for vote casting and confirma-
tion. The OT protocol used is a k-out-of-n protocol as described in chapter 3.1. This allows for multiple
elections to be held at the same time. An example of this can be seen in figure 4.3.1, where it contains
3 different elections and its corresponding codes for Yes, No and Blank, so this essentially becomes a
3-out-of-9 OT protocol.

The OT protocol sends the voters’ encrypted votes to the election authorities. Using these and the
pre-generated vote matrix for the voter, the election authority is able to partially respond to the voters’
encrypted vote. To form the full response, the voter needs this partial response from each election authority.
With the full response from each different election authority, the voting client is then able to recreate the
verification codes, and the voter can check that they are identical to the ones on their voting card. The
protocol is an extension of the OT-Scheme by Chu and Tzeng, which has a overall asymptotic running time
for the sender of O(nk).

The same principle holds true for the finalization code, where each of the election authorities will respond
with the finilizations they each have, which together form the voters’ finalization code that confirms that
the vote was a success.

Page 18 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

5. Implementation
The implementation of the prototype OT protocol for receipt generation is based on the Efficient Composable
Oblivious Transfer with and without selective failures, described in section 3.2. In a real system a 1-out-of-n1

OT extension should be used instead, but for the purpose of creating a prototype and using it as proof of
concept, we find the chosen OT extension, with or without selective failures, to be okay. Since this is only a
prototype, we have taken a naive approach and do not take malicious input or actions into account. We
have therefore not implemented proper error handling and we simply close the program if any exceptions
are thrown.

Our overall thoughts on the system architecture can be found in 5.1. The implementation details for
receipt generation using OT can be found in section 5.3. This section will be more in depth compared
to other sections. Each method is described to make it clear where and how OT is used. To get a better
understanding of how the receipt generation could work in a real voting system, we have implemented a
simple voting simulator. The details of this can be seen in section 5.4. The simulation system is meant as a
visualisation of the concept, so there is no testing or error handling beyond the bare necessities. Section 5.2
provides an overview of the combined systems and the general ideas behind it. The testing strategies for
the receipt generation system are explained in section 5.5. If the reader wants to run the source code, an
explanation on how to do this is given in section 5.6.

5.1 Architecture

When designing the architecture we have tried to adhere to the SOLID-principles and we had a large focus
on being able to switch out subsystems. We chose to do this, in order to make it easier to do testing, which
is written about in section 5.5, and to make it easier to switch out the implementations. This enables the
use of both ECOT with and without selective failures, but also easier testing of different types of OT in the
future, and to implement improvements to different parts of the system, without having to make changes to
more than a single class. To achieve this we have made extensive use of the Bridge Pattern.

To handle data transportation we have created several Data Transfer Objects (DTOs). These includes the
Ciphertext and each of the steps that are transmitted during the OT protocol as well as messages transmitted
over TCP.

5.2 Overview of the combined systems

The idea behind the combined system is to show that receipt generation could work in an actual system.
In figure 5.4.1 it is shown how the combined system is meant to work, when a Voter submits a vote to a
BallotBox. Both the Voter and the BallotBox use the ReceiptGeneration system. Upon receiving a vote, a
receipt is generated on the Server and is sent to the Client. Both sides are dependent on the same underlying
CryptoSystem. When an election has ended, all votes from a BallotBox are sent to the decryption service,
which then tallies and announces the result.

1Or k-out-of-n if several choices can be made

Page 19 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

Figure 5.2.1: Overview of the combined system

In our model we added an TestAuditor. The purpose of the TestAuditor is to verify that the final tally
is correct. The TestAuditor gets the user id and vote from every voter, once they have accepted the result
of a vote. When the election is over the TestAuditor receives a list of all user ids and corresponding votes
from the BallotBox. If the list from the BallotBox corresponds to all the information gained from the voters,
the TestAuditor declares the election a success. It also prints a full list of every user, their final vote and
number of times they voted.

The idea for this setup is based on the Norwegian model in figure 2.3.1, where we merged the voter
and computer into one entity and made the receipt generator a part of both the client and server side. The
TestAuditor is a stand-in for the auditor. We chose the name TestAuditor instead since it actually monitors
every voter, with no secrecy involved and we really want to emphasise that this kind of auditor should
never be used in an actual system with secret ballots.

The combined system makes use of two global classes. The first is Constants, which provides an easy
place to change various variables throughout the program, like the names of algorithms, curves, security
providers, security parameters, etc. The second is the Provider, this class is intended as an easy place
to change between implementations, by changing the return value to the class currently being used, for
example changing between ECOT with or without selective failures.

All communication is sent using TCP, by transmitting DTOs. Contrary to a real system, all information
in the simulation is unencrypted and sent in plain text.

Page 20 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

5.3 Receipt generator

The receipt generator has three subsystems, which can be seen in figure 5.3.1. They each represent different
parts of the OT protocol. The Client subsystem represents Bob, where all steps are initiated in RGClient,
the computations are handled in RGClientLogic and communication with Alice is done through RGClient-
Communicator. As the reader might have guessed, the Server subsystem represents Alice, where all steps
are initiated in RGServer, the computations are handled in RGServerLogic and communication with Bob
is done through RGServerCommunicator. Lastly the CryptoSystem is used as the underlying building
blocks of the protocol, to encrypt, decrypt, hashing and key generation.

The RGClient is supposed to be used by a ReceiptHandler in the voting system and the RGServer
is used by the ReceiptGenerator. By providing a standardised interface for both of them we allow the
underlying logic to be switched out with different types of OT extensions, as long as they are 1-out-of-2 or
1-out-of-n, without the overall voting system having to change as a result. In our original design we forgot
to take this into account, which means that in our current implementation the steps of the protocol are
part of the RGClient and RGServer. This should be separated at a later stage to improve our adherence to
the SOLID-principles and improve our testing. Two types of RGClient/RGServer have been implemented
based on the ECOT described in section 3.2, one with and one without selective failures.

Figure 5.3.1: Breakdown of the receipt generation system, showing inbound and outbound communication
channels and class relations.

Both the RGServerLogic and RGClientLogic make use of the same underlying Cryptosystem, sepa-
rated by an interface so it can be changed as needed by the chosen OT extension.

More in depth details about each subsystem and how their classes are implemented can be found in the
following subsections. See subsection 5.3.1 for details on the Cryptosystem, subsection 5.3.2 for details on
the RGClient and subsection 5.3.3 for the details on RGServer. In all of these subsections we mention binary
strings and ciphers, which are implemented as byte arrays and Elliptic Curve Points (ECPoints) respectively.

Apart from the three subsystems, the receipt generator also makes use of the following helper classes:
Page 21 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• RandomBigInteger, which is used to securely generate a random big integer between 0 and n by
utilising Java’s secure random. See section 3.5 for details on secure random.

• XOR, which takes two byte arrays and does an XOR operation on them. It has two methods, one for
byte arrays of the same length and one for different lengths. In the second method the second input
is the message that has to be scrambled and the first is the scrambler. The second method works by
shortening or increasing the length of the scrambler so the result is both arrays being of equal length
and then making use of the first method to do the actual XOR.

5.3.1 Cryptosystem

The Cryptosystem contains two important building blocks for the ECOT protocol, the cryptosystem PKE
and hash functions. For an overview of where different parts of ECOT is implemented see Fig. 5.3.2. Both
versions of the ECOT use the same Cryptosystem.

Figure 5.3.2: OT usage in the CryptoSystem

CryptoSystem

The CryptoSystem implements the Enc and Dec algorithms and provides indirect access to key generation
and hash functions. Dependency for both Hash and CryptoSystemLogic are set in the setup method.
The method for key generation returns a new key generator which has been set up. hkey, hpad and the
two different hch methods, are used to get access to different hash functions. This is done by calling the
corresponding hash function in the Hash class. Enc and Dec are described in depth below:

Page 22 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• Enc takes two ECPoints, the Public Key and the message to be encrypted, and returns a Ciphertext
containing two ciphers. This is done by computing randomness based on the message, and then using
the randomness to compute cipher1 and then computing cipher2 by using the Public Key, message
and randomness. These two ciphers are then used to create a new Ciphertext. All computations are
done using CryptoSystemLogic.

• Dec takes an ECPoints, the Public Key, a BigInteger, the corresponding Secret Key and the Ciphertext to
be decrypted and returns the decrypted message. The message is first extracted and then the same
steps are done as in enc. If the newly calculated ciphers equal the equivalent ciphers in the Ciphertext,
the message is returned. In case they are not equal, the program will abort. All computations are done
using CryptoSystemLogic.

CryptoSystemLogic

This class handles all the underlying computations done in Enc and Dec. It is dependent on Hash, which is
set in the setup method, for using hash functions that are part of the computations. Methods are described
in depth below:

• ComputeRandomness takes an ECPoint and then computes randomness by giving the point to the
hash function HENC along with the order of the elliptic curve provided by Constants. The result of
this is returned.

• ComputeCipher1 takes a BigInteger and computes a new ECPoint by multiplying the elliptic curve
provided by Constants’ base entry and multiplying it with the BigInteger. The result of this is returned.

• ComputeCipher2 takes two ECPoint and a BigInteger. A new ECPoint is computed by multiplying the
first given ECPoint with the BigInteger. The result of the addition of the second ECPoint with this new
ECPoint is then returned.

• ExtractMessage takes BigInteger and a Ciphertext. An ECPoint is calculated by multiplying the first
cipher with the BigInteger. This point is then subtracted from the second cipher and the result of this is
returned.

Hash

Implementations of HENC, HKEY, HCH and HPAD can be found in Hash. These implementations are
dependent on HashLogic to do the actual computations. Dependencies are set in the setup method. Methods
are described in depth below:

• HENC takes an ECPoint and a BigInteger. First a binary string is generated from the string "HENC",
which is then used together with the ECPoint to compute an array of binary strings. Next the combined
length of all the binary strings is computed. The combined length and array of binary strings is then
used to compute a concatenated binary string of all the binary strings, with the binary string of
"HENC" as the first part. Following this the concatenated binary string is hashed into a new binary
string. All these computations are done using HashLogic. Finally a positive BigInteger is computed
based on the hashed binary string and the modulo of the BigInteger received in the beginning. The
value of this is then returned.

• HKEY takes a binary string. First a binary string is generated from the string "HKEY", which is
then added to an array together with the given binary string. Next the combined length of all
the binary strings is computed. The combined length and array of binary strings is then used to
compute a concatenated binary string of all the binary strings, with the binary string of "HKEY" as
the first part. Following this the concatenated binary string is hashed into a new binary string. All
these computations are done using HashLogic. The hashed binary string is then used to generate a

Page 23 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

positive BigInteger which is used to compute an ECPoint, by multiplying the elliptic curve provided by
Constants’ base entry with the generated BigInteger.

• HCH takes two ECPoints. First a binary string is generated from the string "HCH", which is then used
together with the two ECPoints to compute an array of binary strings. Next the combined length of
all the binary strings is computed. The combined length and array of binary strings is then used to
compute a concatenated binary string of all the binary strings, with the binary string of "HCH" as the
first part. Following this the concatenated binary string is hashed into a new binary string and this
value is returned. All these computations are done using HashLogic.

• HCH takes a binary string. With the exception of adding the given binary string and the generated
one to an array of binary strings, instead of computing it using HashLogic, it is identical to the HCH
described above.

• HPAD takes two ECPoints. This method is identical to the first HCH described above, with the
exception that the generated binary string uses the string "HPAD" instead.

HashLogic

The computations that are needed for HENC, HKEY, HCH and HPAD, are done using HashLogic. Upon
initialisation the security provider and hash algorithm is set up by using the value set in Constants. Methods
are described in depth below:

• ComputeBinaryStrings takes a binary string and any number of ECPoint. It converts every ECPoint
to a binary string by using the built in encoded method. An array of all the binary strings are then
created, with the given binary string in place 0, and returned.

• ComputeConcatenatedBinaryStringLength takes an array of binary strings. The length of each
binary string in the array is added together and the result are then returned.

• ComputeConcatenatedBinaryString takes an array of binary strings and an int. A new binary string
is created of the given int’s length. Every binary string in the array is then concatenated by merging
them into the new binary string in succession from entry 0 to entry n. The concatenated binary string
is then returned.

• Hash takes a binary string and hashes it using the set algorithm and security provider. The output of
the hashing operation is then returned.

KeyGenerator

A generate method can be called to create a Secret Key and the corresponding Public Key. The Secret Key is
generated by using RandomBigInteger to generate a random BigInteger within the order for the elliptic
curve set in Constants. The Public Key can then be generated by multiplying the base entry of the previously
used curve with the Secret Key. Both values can be retrieved with getter methods.

Page 24 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

5.3.2 Client

This subsystem contains the implementations of Bob’s actions, as described in the ECOT protocol. For an
overview of where different parts of ECOT is implemented see Fig. 5.3.3. When describing the implementa-
tion of each class we will first describe how it is done for the version with selective failures, and then how
the version without selective failures differentiate.

Figure 5.3.3: OT usage in the Client

RGClient

When setting up the RGClient using the setup method, Bob’s choice c is given as an int and the dependencies
for both RGClientLogic and RGClientCommunicator are set. Everything that is computed, generated or
verified in the step methods uses RGClientLogic to do the actual computation, generation or verification.
Methods are described in depth below and if nothing else is written the first time a value is mentioned, the
reader can assume that it is a binary string.

• getReceipt is a method for going through each step of the protocol in succession, by calling the
internal step methods in ascending order, eg. step1 then step3 and so on. In between each step, the
RGClientCommunicator is used to get the result of the RGServer’s steps. The information from each
step is set to fields via the receiveStep’s methods. The final step produces a binary string which is
returned. The only difference for the version without selective failures is that there are more steps to
go through.

• step1 is the implementation of step1 from the ECOT protocol. Firstly, a Secret Key sk in the form of a
BigInteger and the Public Key pkc represented by an ECPoint is generated and the random binary string
s is sampled. The binary string is used to compute the ECPoint q, which is then used together with pkc

to compute a new ECPoint Public Key, called pk1−c. When this is done, RGClientCommunicator is
used to transmit step1 by using the parameters c, s, pkc and pk1−c. In the version without selective
failures a random bit c′ is sampled and in the call to transmitStep1 c is replaced with c′.

• receiveStep2 sets the fields for ch, and the two Ciphertexts ct0 and ct1. In the version without selective
failures the fields for two additional Ciphertexts ĉt0 and ĉt1 are also set.

Page 25 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• step3 is the implementation of step3 from the ECOT protocol. The Ciphertext, corresponding to the
choice ctc, is retrieved and used along with pkc and the sk to compute a value pc. Next pkc and pc is
used to compute p′c, which in turn is used to compute p′′c . With all these computations done, chr can
be computed with the c, ch and p′′c . Lastly chr is transmitted by using RGClientCommunicator. This
step is almost identical in both ECOT versions. The only variation is that instead of making use of
Bob’s c it uses c′

• receiveStep4 sets the fields m̃0, m̃1, p′0 and p′1. p′0 and p′1 is replaced by p0 and p1 in the version
without selective failures

• step5 is the implementation of step5 from the ECOT protocol. This step depends a lot on the version
being used. Therefore both will be explained in full.

– step5 with Selective Failures. First it is verified that Alice’s p′c and Bob’s p′c are equal, by using c,
p′c, p′0 and p′1. Should this check fail the program will abort. Following this p′′1−c is computed by
using c, p′0 and p′1, and now CH can be verified by using ch, p′′1−c and p′′c . As before, if the check
fails the program will abort. Next p̃c is computed by using pkc and pc and the message mc can
now be obtained by using the c, p̃c, m̃0 and m̃1. The value of mc can then be returned.

– step5 without Selective Failures. pk0 is computed by using c′, pkc and pk1−c and ct0 is then
verified using ct0, p0 and pk0. This process is then repeated to verify ct1, by taking the same steps
just with variables of 1 instead of 0. Next pk0 and p0, and p1 and pk1 are used to compute p′0 and
p′1 respectively. p′0 and p′1 are then used to compute p′′0 and p′′1 . After these computations ch, p′′0
and p′′1 are used to verify ch. When the last verification is done, ĉtc can be retrieved by using c′,
ĉt0 or ĉt1. Next, p̃c is computed using pkc, sk and ĉtc, and then using c′, m̃0 and m̃1 to obtain m̂c.
Lastly, d is calculated using c and c′ and then transmitted with RGClientCommunicator. Should
any verifications fail, the program will abort.

• receiveStep6 is only applicable for the version without selective failures. It sets the fields m′0 and m′1.

• step7 is only applicable for the version without selective failures and is the implementation of step7
from the ECOT protocol. The message mc is obtained by using the c, m̃c, m′0 and m′1 and then returned.

RGClientLogic

Both versions of ECOT use the same RGClientLogic, since they have many methods in common. RGClient-
Logic has a dependency on the CryptoSystem, which is set in the setup method. Below is a short description
of every method, except setup.

• getKeyGenerator gets a key generator from the CryptoSystem.

• sampleRandomBinaryString creates a binary string of the security parameter length given in Con-
stants and randomises the content using Java’s secure random. The resulting binary string is then
returned.

• computeQ takes a binary string, forwards it to the hkey method in CryptoSystem and returns the
ECPoint received.

• computePK1MinusC takes two ECPoints and subtracts the second from the first. The result is then
returned.

• getCTC takes an int and two Ciphertexts. If the int is zero, the first Ciphertext is returned. Otherwise
the second is returned.

• computePC takes an ECPoint, BigInteger and Ciphertext, and forwards them to the decrypt method in
CryptoSystem. Finally it returns decrypted ECPoint.

Page 26 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• computePCMark takes two ECPoints, forwards them to the hch method in CryptoSystem and returns
the resulting binary string.

• computePCMark2 takes a binary string, forwards it to the hch method in CryptoSystem and returns
the resulting binary string.

• computeCHR takes an int and two binary strings. If the int is 0, the first binary string is returned.
Otherwise an XOR operation is done on the two binary strings and the result is returned.

• verifyPCMark takes an int and three binary strings. It checks whether the first binary string is equal
to one of the other two binary strings. It checks against the second binary string if the int is 0 otherwise
it checks against the third. A boolean value of true is returned if they are equal. Otherwise false is
returned.

• abort takes a string and throws a run time exception with the string as the error message.

• computeP1MinusCMark2 takes an int and two binary strings. If the int is 0, the first binary string is
returned. Otherwise the second binary string is returned.

• verifyCH takes three binary strings. It verifies that the XOR result of the second and third binary
string equals the first binary string. It returns a boolean value of true if they are equal and false if they
are not.

• computePCWave takes two ECPoints and forwards them to the hpad method in CryptoSystem. The
resulting binary string from hpad is then returned.

• obtainMessageC takes an int and three binary strings. If the int is 0, the XOR result of binary string
one and two is returned. If the int is not 0, the XOR result of binary string one and three is returned.

• sampleRandomBit uses Java’s secure random to return a random bit value, as an int.

• computePk0 takes an int and two binary strings. If the int is 0, the first binary string is returned.
Otherwise the second binary string is returned.

• computePk1 takes an int and two binary strings. If the int is 1, the first binary string is returned.
Otherwise the second binary string is returned.

• verifyCT takes a Ciphertext and two ECPoints. A new Ciphertext is computed by calling encrypt in
CryptoSystem with the two ECPoints. It is then verified that the given Ciphertext and the newly
computed Ciphertext are equal. If they are equal, a boolean value of true is returned and if not the false
is returned.

• calculateD takes two ints and throws a runtime exception if they are not 1 or 0. The XOR of the input
is then returned.

RGClientCommunicator

Two implementations have been made of RGClientCommunicator, one for each version of ECOT. Both
have a number of methods for transmitting steps equal to the amount of steps Bob makes in the protocol
and a number of methods for receiving equal to how many step results Alice sends to Bob. Each transmit
and receive functions the same way, the only difference is the data transmitted. For details on what data is
being transmitted and received see the corresponding steps and receive method in RGClient. The setup
is used to set the connection to the RGServer and details of the other two types of methods found in
RGClientCommunicator can be seen below.

Page 27 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• transmitStep takes data and uses it to create a step DTO corresponding to the name of the method
(eg. transmitStep1() creates a step1 DTO). This DTO is then transmitted to the RGServer. If any errors
occur, a run time exception is thrown. An exception to the general rule is in transmitStep1(), where a
choice is given, which is used to ensure pk0 is transmitted.

• receiveStep listens for a response from the RGServer. Upon receiving it, the response is cast to a
corresponding step DTO (eg. receiveStep2() returns a step2 DTO) and returned. If any errors occur, a
run time exception is thrown.

5.3.3 Server

Alice’s actions described in the ECOT protocol is handled in the server subsystem. For an overview of the
where different parts of ECOT are implemented, see Fig. 5.3.4. As we did with the client in subsection 5.3.2,
we will describe the implementation of each class. For each class we will first describe how it is done for the
version with selective failures and then how the version without selective failures differentiate.

Figure 5.3.4: OT usage in the Server

RGServer

The setup method for RGServer takes the two receipt messages m0 and m1 as an array of ECPoints and
sets the dependency for RGServerLogic and RGServerCommunicator. If there are less or more than
two ECPoints in the array, a runtime error is thrown. Everything computed, generated or verified in the
step methods uses RGServerLogic to do the actual computation, generation or verification. Methods are
described in depth below and if nothing else is written the first time a value is mentioned, the reader can
assume that it is a binary string.

• generateReceipt is a method for going through each step of the protocol in succession. The RGServer-
Communicator is called to get the result of the steps done in the RGClient, eg. receiveStep1 then
receiveStep3 and so on. The information from each step is set to fields via the receiveSteps methods.
In between each received step, internal step methods are called in ascending order, eg. step2 then
step4 and so on. This continues until the protocol is done. The only difference for the version without
selective failures is that there are more steps to go through.

Page 28 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• receiveStep1 sets the fields s and the ECPoint pk0.

• step2 is the implementation of step2 from the ECOT protocol. The step starts by using s to compute
the ECPoint q, which is then used with pk0 to calculate the ECPoint pk1. Following this, p0 and p1

are sampled and used to create two ECPoints p0 point and p1 point. These do not appear in the ECOT
protocol and are an addition we have added as a result of how our implementation of encryption
works. Since encryption needs the p value to be an ECPoint, we chose to convert all p′s to ECPoints.
After this p0 and p1 is used with pk0 and pk1 respectively to compute p′0 and p′1. The values p′0 and p′1
are then used to compute p′′0 and p′′1 , which are used to compute ch. Two Ciphertexts ct0 and ct1 are then
computed from two values, pk0 and p0, and pk1 and p1 respectively. The RGServerCommunicator is
used to transmit ch, ct0 and ct1.

In the version without selective failures the following is done as well as all the above mentioned: Two
more p’s are sampled, p̂0 and p̂1, which are then used to create two ECPoints for the same reasons as
mentioned above. p̂0 is used to compute p̂0 point and p̂1 is used to compute p̂1 point. pk0 and p̂0 point
will then be used to compute ĉt0 and pk1 together with p̂1 point will then be used to compute ĉt1. At
the end of the step, ĉt0 and ĉt1 will be added to the things already being transmitted.

• receiveStep3 sets the field chr.

• step4 is the implementation of step4 from the ECOT protocol. Firstly, chr is verified by using both chr
and p′′0 . Should the verification fail, the program will abort. If the verification is a success the values p̃0

and p̃ will be computed from pk0 and p0 point, and pk1 and p1 point respectively. Next m̃0 is computed
from p̃0 and m0, followed by m̃0 computed from p̃1 and m1. Finally m̃0, p̃1, p′0 and p′1 are transmitted
with the RGServerCommunicator.

Two extra values are computed in the version without selective failures. Firstly, m̂0 is computed as
a binary string of the same length as m0’s binary string length and then m̂1 is computed as a binary
string of the same length as m1’s binary string length. Finally different values are transmitted with the
RGServerCommunicator. The ones transmitted are m̃0, p̃1, p0 point and p1 point

• receiveStep5 is only applicable for the version without selective failures. It sets the field for the int d.

• step6 is only applicable for the version without selective failures and is the implementation of
step6 from the ECOT protocol. First the value m̂d is computed from d, m̂0 and m̂1, followed by the
computation of m̂1−d, using the same values. By using m̂d and m0, m′0 can be computed. Similarly,
the value m′1 can be computed from m̂d − 1 and m1. Finally, m′0 and m′1 will be transmitted using
RGServerCommunicator.

RGServerLogic

As with the RGClientLogic, both version of ECOT use the same RGServerLogic. In the setup method a
dependency for the CryptoSystem is set. Below is a short description of every method, except setup.

• computeQ takes a binary string, forwards it to the hkey method in CryptoSystem and returns the
ECPoint received.

• computePK1 takes two ECPoints and subtracts the second from the first. The result is then returned.

• sampleP creates a binary string of the security parameters length given in Constants and randomises
the content using Java’s secure random. The resulting binary string is then returned.

• pToECPoint takes a binary string, forwards it to the hkey method in CryptoSystem and returns the
ECPoint received.

• computePCMark takes two ECPoints, forwards them to the hch method in CryptoSystem and returns
the resulting binary string.

Page 29 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• computePCMark2 takes a binary string, forwards it to the hch method in CryptoSystem and returns
the resulting binary string.

• computeCH takes two binary strings. An XOR operation is done on the two binary strings and the
result is returned.

• computeCipherText takes two ECPoints, forwards it to the encrypt method in CryptoSystem and
returns the Ciphertext received.

• verifyCHR takes two binary strings and verifies if they are equal. If they are equal a boolean value of
true is returned. Otherwise the boolean value of false will be returned.

• abort takes a string and throws a runtime exception with the string as the error message.

• computePWave takes two ECPoints, forwards them to the hch method in CryptoSystem and returns
the resulting binary string.

• computeMWave takes a binary string and an ECPoint. An XOR operation is then done on the binary
string and the binary representation of the ECPoint. The result of this is returned.

• sampleRandomBinaryString takes an int and creates a binary string of the int value’s length. The
content of the binary string is randomised using Java’s secure random. The resulting binary string is
then returned.

• computeMWave takes two binary strings, performs an XOR operation on the two binary strings and
returns the result.

• computeMdH takes an int and two binary strings. If the int is 0, the first binary string is returned.
Otherwise the second binary string is returned.

• computeM1dH takes an int and two binary strings. If the int is 1, the first binary string is returned.
Otherwise the second binary string is returned.

• computeMMark takes a binary string and an ECPoint. An XOR operation is then done on the binary
string and the binary representation of the ECPoint. The result of this is returned.

RGServerCommunicator

The RGServerCommunicator is completely identical in the way the methods work as in the RGClient-
Communicator. The only difference, is that communication is from Alice to Bob, not Bob to Alice.

Page 30 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

5.4 Voting simulator

Where the combined system is based on the Norwegian example, the underlying specifics of the voting
simulator is based on our interpretation of how Danish elections are held, which is shown as we describe the
Voter in subsection 5.4.2. The BallotBox will be described in subsection 5.4.1 and the DecryptionService
will be described in subsection 5.4.3. A full overview of the system as a whole is shown in Fig. 5.4.1.

Figure 5.4.1: Breakdown of the receipt voting simulator system, showing class relations.

5.4.1 Ballot box

The BallotBox is set up to allow several connections for different voters, who connect through the VoterCon-
nector. In a real system an authentication process would then take place and a queue system would be in
place to handle a large volume of requests, but for simplicity we assume that all voters are authenticated and
do not run tests with more users than the system can handle. When this step is complete a VotingSession is
started for each voter connected.

During the voting session, the voter will be given a ballot with two choices and a unique ECPoint for
each choice. It will then receive the vote from the voter and start the ReceiptGenerator. If the receipt is
accepted the vote will be stored in the VoteLogger and the voter will be informed that it is stored.

The ReceiptGenerator sets up and runs the server side of the receipt generator and returns the result.
Either the receipt is accepted or not.

When the election is over, the BallotBox closes all open connections and stops accepting new ones.
In a real system remaining users should properly be allowed to finish their vote within a time frame.
The system then gets all the votes from the VoteLogger as an ArrayList and transmits them using the
DecryptionServiceConnector to the DecryptionService. This process should include mixing to ensure that
voters cannot be traced back to their own vote.

Lastly, the VoteLogger transmits what each voter has voted to the TestAuditor, which of course must
never be done in an actual system.

Page 31 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

5.4.2 Voter

In real life, a voter goes to a polling station to gain access to a ballot box. In our system the Voter does this
by establishing a connection through the BallotBoxConnector. Upon establishing connection and getting
authenticated, the Voter starts a VotingSession. This can be seen as a voter being allowed into a voting
booth.

Thereafter the VotingSession will request a ballot for the user. The act of voting is simulated by Voting,
which in our system returns a random bit. A vote is then sent to a ballot box’s VotingSession and the
ReceiptHandler is then used to ensure the correct vote is tallied. This corresponds to when a voter in a
voting booth has set their mark on the ballot and is now double-checking that the mark is in the correct
place.

Upon receiving an accept from the ReceiptHandler, the VotingSession transmits an acceptance to the
ballot box’s VotingSession and if it’s a confirmation that the vote is being stored on the server, the voting
is over. In a real life example this is equivalent to the voter having checked the ballot, folded it and put it
into the a ballot box. Should any of these steps fail, or should the receipt not be accepted, the process is
terminated.

The final step is only done for testing purposes. When the VotingSession is over, it returns the vote to
the Voter, which then transfers it to the TestAuditor along with the user id.

5.4.3 Descryption service

The DecryptionService starts a listening server BallotBoxConnector, which accepts incoming connections
from a BallotBox and stores the vote result. In our simplification we only use one BallotBox, so there is no
checks to ensure all BallotBoxes have delivered their results.

When all the results have been delivered, the DecryptionService will use VoteCounter to tally the votes
and print the results.

5.5 Test strategy

As already mentioned we did not test the simulation system. We chose not to do this, because if we were to
properly test the simulation system it would take us a disproportionate amount of time, since our focus
is on the OT and the simulation system is only used to show it could work. Our test strategy is therefore
only applicable for the receipt generator. Below we will discuss unit testing in subsection 5.5.1, integration
testing in 5.5.2 and system testing in 5.5.3.

5.5.1 Unit testing

The purpose of our unit testing is to make sure every individual part of the program works as intended.
The idea being that if every part works as intended in isolation and we add all parts correctly together, then
we can have a high degree of confidence that our program actually works.

We intended to do this by ensuring that each class is only dependent upon interfaces, this would make
testing a lot easier since interfaces can easily be mocked. At the same time by ensuring that every class and
method has only one responsibility, we get code that is easily testable. Since every method only handles one
logic computation or calls sub-parts of the system, we can test every piece of logic separately and verify
that correct methods are called to ensure the flow of data is correct. We do this by making use of boundary
testing and path testing [5].

As mentioned in section 5.3 we did not consider how the system should be connected to the simulation
system and the design constantly changed as we learned new things. This means that the way we have
done our unit testing sometimes differs a little from how we imagined doing unit testing. This is especially
noticeable in the RGClients and RGServers, where proper unit testing could not be done for the method

Page 32 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

generateReceipt() since it was dependent on methods in the same class, which cannot be mocked, at least
without dubious practices. Also the communicators were completely redone towards the end, which means
we did not have time to redo the tests for them.

5.5.2 Integration testing

Integration tests would have been a very good thing in addidtion to our unit tests to ensure everything
worked properly. This would be to insure that all parts are added correctly. Integration tests were however
scrapped as a result of the unit testing demanding a lot more time than we had anticipated.

If we had more time we would have implemented tests similar to our unit test, with one of the depen-
dent interfaces using the actual implementation instead of a mocks. For example if we were testing the
CryptoSystem we would have one group of tests to test the integration with CryptoSystemLogic where
only Hash is mocked. A second group of tests would then be made to test the integration with Hash. In
this example CryptoSystemLogic and HashLogic in Hash would be mocked.

5.5.3 System testing

We decided that our system testing would be done indirectly by making use of the FullSystemMain. Our
reasoning for this is mainly time. It would have been nice to have automated tests that could fail or succeed,
but for our purpose we found it to be sufficient that we can see that the program runs hundreds of times and
prints results. By interpreting the results we can make a confident claim that the system works as intended,
while showcasing it.

5.6 Running the program

We suggest compiling the program through the reader’s preferred IDEA, we recommend something like
IntelliJ, and then run FullSystemMain. Dependencies for the program are supplied with the source code in
the folder libs. Depending on the settings setup in the top fields of FullSystemMain, it will either compare
the two version of ECOT or run an election simulation. The compare works by running each version with n
Voters, connecting to the BallotBox and voting sequentially, and then simply timing them. The standard
setting are to compare the two versions of ECOT with 1000 voters.

Running the election simulation will start a BallotBox and start n sessions of between x and y Voters.
The sessions start with five second intervals. Each Voter in a session will start on a separate thread and
attempt to vote. A timeout of between 0,5 and 1,5 seconds is set between starting each thread. There is a
random 50/50 chance that a session will be set as "Rush Hour", which means that there will be no timeout
on starting the Voters. The simulated election ends after some predefined set time, new Voters can still be
started after this, if the election time is set too low, but they will not be able to vote. When the election is
closed, the election results will be printed.

The parameters that can be changed in the FullSystemMain file and their standard setting can be seen
below.

• minVotersPerSession = 15; The minimum amount of voters per session in a simulated election.

• maxVotersPerSession = 50; The maximum amount of voters per session in a simulated election.

• numberOfVoters = 5000; Number of potential unique voters in the election, used for creating user ids.
The fewer unique voters, the higher the chances of a voter voting multiple times.

• votingSessions = 20; The number of sessions to run when simulating the election.

• electionLengthSeconds = 120; How many seconds to wait before closing the election.

• voteAttempts; Should not be edited! Used for seeing how many voters that have been started.

Page 33 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

• runElectionSimulation = false; Set to true if the election simulator should be run. Set to false if the
compare should be run.

• useECOTWithSelectiveFailures = false; Set to true to use ECOT with selective failures for the election
simulator, false if the compare should be run. Set to false to use without selective failures.

• compareVoters = 1000; Number of voters to use when comparing ECOT versions.

• sessionTimeoutInSeconds = 5; Number of seconds to wait in between sessions.

Page 34 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

6. Discussion
It is tempting to dive right into discussing how well or bad OT worked for generating receipts for voters,
but several things need to be examined before we do this. We will start by examining if it is a good
idea to generate the verification using only the computer used to vote. We will do this by discussing the
differences between having a physical card with verification codes and just having the verification written
on a computer screen, this will be done in section 6.1. Another part of this discussion is about receiving the
verification on the same device as used for voting or on another device, which will be discussed in 6.2. We
will reflect upon the problems of authentication in section 6.3 and then the problems with communication
in section 6.4. We also need to consider network security if we were to finish a DRV system and we will
discuss this in section 6.5. Next we will examine performance and bottlenecks in our implementation in
section 6.6. Lastly, we will digress a bit and discuss the problem of building trust in section 6.7.

6.1 Physical card verification vs. computer only verification

In both the Norwegian and Swiss DRV systems, the voters receive a physical card that they use as part
of the verification process. We find the main disadvantage of this to be the need of a central system for
generating the receipts beforehand and the added complexity of securely transmitting these to the voter
and the voting system when voting occurs. This would increase the cost of the whole process and slightly
inconvenience the voter by making them check the received numbers against some physical card. But it is
in no way a deal breaker and it might actually have some extra benefits, as compared to how we addressed
this, where the system just informs the voter on screen, "you voted this".

The most obvious problem, to us at least, with computer only verification is that the computer tells you
what you voted. The first issue with this is that if the computer is monitored in some way, then the reply
could be seen by a malicious third party, compromising secrecy of the election. One could easily imagine
people offering to buy votes and having voters install third party software to actually monitor the vote
response, making it a lot easier and more safe to buy votes. Potential buyers can be more confident that they
figuratively speaking "get what they pay for" and they could potentially reach many more customers. The
same goes for coercers. The second issue, which relates to the previous ones, is what if someone, like foreign
powers, political parties, companies or others, could infect several computers and know what specific people
voted? This could be used to target specific people based on what they voted, ranging from harassment,
exclusion, public ridicule, influencing job opportunities, targeting advertisement or propaganda and so on.
Another way to misuse this information would just be to make it public and use it to fuel mistrust in the
system in general and potentially undermine the entire process.

A second problem is related to the last issue mentioned above, trust. How can a user truly believe that
the system does not know what was voted and believe that secrecy is intact, when the system actively writes
it on the screen. If you have enough technical expertise, you could read through the source code and see for
yourself that this is true, but most voters would not have that technical expertise. Some might argue that
the experts could assure the public that the system is fine, but people do not always trust experts: One can
just google flat earth and anti-vaxxers to get a good idea of how experts are not trusted. This could again
fuel mistrust in the system. If a malicious third party as mentioned above gets information about specific
people’s votes and leaks them, this problem could become even worse. How would you convince anyone to
trust this system again, or maybe even trust the election result?

If trust takes a hard enough hit, some people might even begin to mistrust the underlying democratic
process. And this is the true problem that we must avoid. If the trust in the DRV system is broken, then we
can just replace it or drop it for now. But if trust in the democratic process is broken or just damaged, then it
could have far reaching consequences for a democratic society.

Page 35 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

We also see these problems with the physical cards, but they are not as pronounced. In the Swiss and
Norwegian examples third parties can only get a code and would need either access to the system that
generated the cards or the cards themselves. This makes it a lot harder for third parties not in contact with
the voter to use the information, since they only know they voted, not what they voted. It also means that
when buying or coercing you now have to get a photo of the verification card and compare this to the code,
making the process require more effort.

As for the problems with trusting in the secrecy, we would argue that it is easier for people to believe
their vote is secret when they receive a code they have to verify. In fact this might actually give them a
feeling of being part of the security and therefore make the system more trustworthy, this is however just
speculation and research should be done to see if this claim can be substantiated.

This discussion has so far been focused on the receipt, but the problem with a computer being monitored,
is that the whole process can be monitored, not just the receipt. This means that all the points made in the
beginning can be made for when a voter is selecting what to vote for. So the biggest difference so far ends
up being whether the voter can trust that the ballot is actually secret.

A bigger problem might be if we consider the risk of Man-in-the-Middle Attacks, where some malicious
party attempts to vote on the voter’s behalf. If there is no verification card, then the user will have no way
of knowing something is wrong, but with a verification card they will be able to see something is wrong
using the codes.

6.2 Verification on the used device vs. another device

Another difference is the one between receiving the verification on the same device that was used for
voting and on another device like they did in Norway. We find that both solutions have advantages and
disadvantages.

When having another part of the verification process happen on a different device, we increase the
likelihood of the voter actually being who they claim to be. But as the voter is already using some kind
of personal identification like MinID and a personal voter card with the verification codes, this seems like
a small improvement. But it makes identity theft for voting purposes harder, since the voter will know if
someone else voted on their behalf.

At first glance it might also seem like an advantage that malicious parties would need to monitor two
devices. However, as we saw above malicious parties only need to monitor a computer to see what people
actually vote. If they can monitor things like mobile devices, it might be easier to link specific people to
specific votes. When using another device, it can also be used to assist coercers or buyers, since they will
know by monitoring the mobile device whether the voter votes again. This means that a voter will have to
go to a physical voting station to vote if they want to keep their vote as their own, which could be monitored
by a potential coercer or buyer. All this would not be an issue if the voter only use one device, since they
could "just" go to an unmonitored computer and vote from there.

6.3 Authentication

In a DRV system authentication will always be of great concern. When voting conventionally, you au-
thenticate yourself by turning up to the election and showing your id. However, when using a computer
for voting, who is there to authenticate you? And how can the system make sure that you are actually
the person who you claim to be? In a system like CHVote from chapter 4, each voter is given a unique
secret code on their voting card, which is used for authentication. However, this solution is not fully secure
since the voting cards are both calculated, printed and transported by entities other then the voter, and it
would be possible for any of these parties to gain access to the codes from the voting cards, and use them to
authenticate as other voters. Such a system requires trust in the entities or at least a way to see if any of
the entities have become corrupted and are exploiting their power. This results in a system that should be

Page 36 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

able to effective cancel elections if there is any sign of corrupted entities, since corruption could have dire
consequences for the final result.

If a system like CHVote were to be used in Danish elections, we would also have to add authentication to
the system, which should be doable for every Danish voter. Using the secret code as described above is one
solution, however there might also be other possible solutions. Many elements of Danish online security are
already linked to the NemID system a Multi-Factor authentication tool available for all Danes, which they
have used for several years. This could add trust to a system, instead of having to build up trust in a whole
new medium of authentication. However, having dependencies like this as a part of your system, can limit
your knowledge of problems and flaws that is happening in your system. There might be backdoors and
holes in a system like NemID, specially when they are not following the open design principle. These flaws
would be transferred into your system, or they might come later, when NemID is updated. Dependencies
like this can grant relieve and help the project come along, but can also bring in problems both now and
later, so they should be used with care and they should be changed, if problems arise.

6.4 Problems with communication

Transport of messages from the system to users would also need to be thought through. As outlined in the
discussion about computer verification, users might not trust messages coming from their own computer
and for good reason. This is what is called the Insecure platform problem where it is infeasible to make sure
that all computers, phones etc. that are used for voting are secure. This is why validation in CHVote is done
using voting cards or as in the Norwegian protocol, where phones are used during validation. Using a
phone or voting card brings Multi-Factor authentication to the system, and if or when a voting system is
adopted in Denmark, there should be a similar system to transmit messages between system and voter, that
can avoid the Insecure platform problem.

6.5 Network security

The web is not built to be secure, therefore we need to use cryptography and network security when
exchanging secrets using web protocols. For OT there is already built-in cryptography as described in
chapter 3, but we could still add something like the HTTPS protocol. This would provide an extra layer
of security to the system and make it even harder for adversaries to hack into the system. Using such a
trusted protocol could also have a positive effect on the trust in the system. To setup HTTPS you need a
trusted certificate authority to sign the certificates used to distribute the Public Key, this again requires trust in
3rd parties that might or might not be trustworthy. However, the gain could offset the problems, as there
are already many trusted certificate authorities and no messages in the protocol would ever have to be
transmitted in plaintext.

Page 37 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

6.6 Performance and bottlenecks

Running the protocol with 1000 sequential voters returns the following average running times:

With selective failures: 29184 ms
Without selective failures: 50858 ms

The difference between with and without selective failures is therefore 57%, which is not surprising since
the without selective failures protocol contains more computations. In a real world application, you would
also have to work with network latency. This would however be dependant on the distance between the
client and the server. Estimating a latency of between 20-30 ms would result in the following transmitting
time for a user:

With selective failures: 50-75 ms
Without selective failures: 70-105 ms

Since the latency of using the network is between 2-4 times greater than the computation times, it would
seem that even a reduction in computation times would not have a great effect on the protocol as a whole.

The results from scaling the system to a greater number of sequential voter’ shows that the protocol
scales in linear time with the following results from 10000 sequential voters:

With selective failures: 282352 ms
Without selective failures: 505862 ms

Looking into the computations, many of them are computed using the BC Library, limiting the work we
can do to optimise the performance of the functions. An example of this is the use of ECC in the implemen-
tation. Since we have not made the implementation, we can’t control when doing point multiplication and
other functions, and just have to trust that BC has implemented secure and fast functions.

Point multiplication

Point multiplication is quite a big part of our implementation, and running several point multiplications in
sequence shows an average computation time of 1.5-2.0 ms pr. multiplication. The protocol with selective
failures contains 14 multiplications. Compared to the total computation time of about 29 ms for a single user,
about 85% of the total computation time is used on point multiplication. The protocol without selective
failures contains 25 multiplications. Compared to the total computations time of about 51 ms for a single
user, about 92.5% of the total computation time is used on point multiplication.

This shows that the point multiplication is a bottleneck of this protocol. Since we use the BC Library for
the implementation of the point multiplication, we are fully dependant on the computation time of their
implementation. This could be removed by using another form of encryption, that does not make use of
point multiplication, though this might just bring in another bottleneck with another type of computation,
used for that encryption technique.

Subtraction and addition

Other functions on Elliptic points that we use are subtraction and addition. However, testing the average
computation time for these are about 0.01 ms each, so they are negligible compared to point multiplication.

XOR

The XOR functionality we have built using the java Library, our implementation runs in linear time
proportional to the length of the inputs. However, since the length of the byte arrays are at maximum 33
bytes long, this have very little influence on the computation time.

Page 38 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

Hashing

We have the same problem with hashing as we have with the scalar multiplication, where we make use of
BC to preform the computations and can’t change much in the way of implementations. We can test the
running time for the hashing algorithms and this results in a running time between 0.001 ms and 0.03 ms.
This probably does not have much of an impact on the protocol’s performance.

6.7 The problem with building trust

Trust is a very important factor. Even with a fully secure system it would not matter if the voters do not
trust the system. We can add several layers of security, have experts review the system, use open source etc,
but this will not necessarily convince the voters or be enough to counter potential misinformation. So how
do we get around this? Our best tool to build trust could be the same we use for the physical voting system:
the test of time. One of the reasons we can be so confident in the security and anonymity of elections,
using conventional voting, is our long experience of using it. Time has shown us that it works and keeps
working. But relying on this tool is a long process, especially with elections being years apart. To get around
this, a voting system could be built to support DRV in several countries. If for example the EU built a
voting system that could be used by all member countries, the voting system would be used frequently and
therefore be tested in the real world more often. This could help to increase our confidence faster and help
us to find weaknesses in the system. Another step that could be taken is to make the system open for other
types of DRVs and not just elections, like it has been done with CHVote. The more we use the system, the
more secure it will become as we identify and fix weaknesses and the more confident we can be that the
system works, thereby increasing our trust in the system overall.

Page 39 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

7. Conclusion
Over the last couple of years the idea of having DRV has been on the rise. It has been seen as a solution to
many of the problems with the current systems and would only be natural in a society that becomes more
and more digitised. There have been many attempts at implementing DRV other then the two attempts
in Norway and Switzerland described in this paper, though we have yet to see any of them becoming a
real contender to replace conventional voting. One step in this direction could be some kind of receipt
generation system that voters can trust.

Generating a receipt for a voter that provides the voter with evidence that their vote has been received
correctly, while remaining anonymous, can be done using OT. Based on our prototype and how it is used
in CHVote, it seems a feasible solution for a real world system. If we assume that it is possible to create
a k-out-of-n protocol that has the same asymptotic running time of O(kn), as the k-out-of-n OT protocol,
which CHVote’s OT protocol is extended from. While also assuming that running a 1-out-of-2 problem with
this imagined protocol results in the same real world running times as we found for our implementation.

We can now theorise on how long it would take to get a receipt. If we imagine that there are 200
candidates to choose from, we would then have a 1-out-of-200 problem where n has been raised from 2 to
200. This would result in an increase in computation by a factor of 100, resulting in around 5085 ms pr. user
for generating a receipt, if we use our results for the version of ECOT with selective failures. Disregarding
latency, a user would have to wait around 5 seconds for a receipt, using this logic. This would be okay in our
opinion, but it is not optimal and handling more choices than this could become problematic, especially in
systems where the voter can vote multiple times. The next step would be to create a k-out-of-n protocol and
see if we can ensure security and reasonable running times. Until this is done we cannot be sure whether
OT would be a good solution, at least from the technical perspective in a DRV system.

The biggest problem might however not be the technical aspects, but rather if a receipt actually improves
the voter’s confidence in the system’s correctness and if the voter trusts that anonymity is intact. As shown
in this paper, if we can not earn the voter’s trust then everything else is wasted work. We argue that receipts
would help, but there are other methods than using an OT protocol to solve this problem. So is OT actually
the best choice or could it make the voters suspicious of the system and question the anonymity when
they receive the verification response on screen. This needs to be researched and if we were to continue
this project, we would suggest making a thorough study of how different types of receipts / verifications
influence the voter’s trust and confidence in the voting process.

OT is a solution for generating a receipt in a DRV system, while keeping the voter anonymous. Should
we use it nonetheless? We believe more data is needed before we can answer this question, but based on
our current results it is a contender.

Page 40 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

References
[1] Abdalla Al-Ameen and Samani Talab. “The Technical Feasibility and Security of E-Voting”. In: The

International Arab Journal of Information Technology 10.4 (2013).

[2] BigInteger. Oracle. URL: https://docs.oracle.com/en/java/javase/14/docs/api/java.base/
java/math/BigInteger.html (visited on 08/11/2020).

[3] Nadja Braun Binder et al. “International Standards and ICT Projects in Public Administration: In-
troducing Electronic Voting in Norway, Estonia and Switzerland Compared”. In: Halduskultuur 19.2
(2019), pp. 8–22.

[4] Encyclopædia Britannica. Direct democracy. URL: https://www.britannica.com/topic/direct-
democracy (visited on 06/17/2020).

[5] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineering Using UML, Patterns and Java.
Third Edition. Pearson, 2014. ISBN: 978-1-292-02401-1.

[6] B. McM. Caven. “E.S. Staveley, Greek and Roman Voting and Elections. (Aspects of Greek and Roman
life). London: Thames amp; Hudson. 1972. Pp. 271. 9 text-figs.” In: Journal of Roman Studies 63 (1973),
pp. 263–263. DOI: 10.2307/299193.

[7] George Coulouris et al. Distributed Systems Concepts and Design. Fifth Edition. Pearson, 2012. ISBN:
978-0-273-76059-7.

[8] Malcolm Crook and Tom Crook. “The Advent of the Secret Ballot in Britain and France, 1789–1914:
From Public Assembly to Private Compartment”. In: History 92.308 (2007), pp. 449–471. DOI: 10.1111/
j.1468-229X.2007.00403.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.
1468-229X.2007.00403.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-
229X.2007.00403.x.

[9] Bernardo David and Rafael Dowsley. “Efficient Composable Oblivious Transfer from CDH in the
Global Random Oracle Model. Personal Communication, 2020”. In: (2020).

[10] Cambridge Dictionary. Digital. URL: https://dictionary.cambridge.org/dictionary/english/
digital (visited on 07/25/2020).

[11] Cambridge Dictionary. Electronic. URL: https://dictionary.cambridge.org/dictionary/english/
electronic (visited on 07/25/2020).

[12] Cambridge Dictionary. Trust. URL: https://dictionary.cambridge.org/dictionary/english/
trust (visited on 05/07/2020).

[13] Folketinget.dk. Folketingsvalg. URL: https://www.ft.dk/da/folkestyret/valg-og-afstemninger
(visited on 05/08/2020).

[14] State of Geneva. CHVote 2.0 project release. URL: https://chvote2.gitlab.io/ (visited on 08/17/2020).

[15] State of Geneva. E-voting system - CHVote. URL: https://republique- et- canton- de- geneve.
github.io/chvote-1-0/index-en.html (visited on 06/17/2020).

[16] Jan Gerlach and Urs Gasser. “Three case studies from switzerland: E-voting”. In: Berkman Center
Research Publication No 3 (2009).

[17] J. Gibson et al. A review of E-voting: the past, present and future. Springer, 2016. URL: https://link.
springer.com/article/10.1007/s12243-016-0525-8#Sec2 (visited on 07/22/2020).

[18] Kristian Gjøsteen. “Analysis of an internet voting protocol”. In: (July 2010).

[19] Rolf Haenni et al. “CHVote System Specification”. In: (2019).

Page 41 of 45

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/math/BigInteger.html
https://www.britannica.com/topic/direct-democracy
https://www.britannica.com/topic/direct-democracy
https://doi.org/10.2307/299193
https://doi.org/10.1111/j.1468-229X.2007.00403.x
https://doi.org/10.1111/j.1468-229X.2007.00403.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-229X.2007.00403.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-229X.2007.00403.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-229X.2007.00403.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-229X.2007.00403.x
https://dictionary.cambridge.org/dictionary/english/digital
https://dictionary.cambridge.org/dictionary/english/digital
https://dictionary.cambridge.org/dictionary/english/electronic
https://dictionary.cambridge.org/dictionary/english/electronic
https://dictionary.cambridge.org/dictionary/english/trust
https://dictionary.cambridge.org/dictionary/english/trust
https://www.ft.dk/da/folkestyret/valg-og-afstemninger
https://chvote2.gitlab.io/
https://republique-et-canton-de-geneve.github.io/chvote-1-0/index-en.html
https://republique-et-canton-de-geneve.github.io/chvote-1-0/index-en.html
https://link.springer.com/article/10.1007/s12243-016-0525-8#Sec2
https://link.springer.com/article/10.1007/s12243-016-0525-8#Sec2

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

[20] Carmit Hazay and Lindell Yehuda. Efficient Secure Two-Party Protocols. Springer, 2010. ISBN: 978-3-642-
14302-1.

[21] Azine Houria, Bencheif Mohamed Abdelkader, and Guessoum Abderezzak. “A comparison between
the secp256r1 and the koblitz secp256k1 bitcoin curves”. In: (2018).

[22] Legion of the bouncy castle inc. Bouncy castle webpage. URL: https://www.bouncycastle.org/index.
html (visited on 07/08/2020).

[23] Randi Markussen, Lorena Ronquillo, and Carsten Schürmann. “Trust in Internet Election Observing
the Norwegian Decryption and Counting Ceremony”. In: International Conference on Electronic
Voting, EVOTE2014, E-Voting.CC GmbH, 2014.

[24] Robert C. Martin. The Principles of OOD. URL: http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod (visited on 08/10/2020).

[25] mockito.org. Mockito. URL: https://site.mockito.org/ (visited on 07/29/2020).

[26] N. Mpekoa and D. van Greunen. “E-voting experiences: A case of Namibia and Estonia”. In: 2017
IST-Africa Week Conference (IST-Africa). 2017, pp. 1–8.

[27] nemid.nu. NemID. URL: https://www.nemid.nu/dk-da/ (visited on 08/13/2020).

[28] norge.no. MinID. URL: https://www.norge.no/en/service/minid (visited on 07/27/2020).

[29] Oracle. Secure Random. URL: https://docs.oracle.com/en/java/javase/14/docs/api/java.
base/java/security/SecureRandom.html (visited on 07/22/2020).

[30] René Peralta. Electronic voting. URL: https://www.britannica.com/topic/electronic-voting
(visited on 07/08/2020).

[31] Regjeringen.no. Internet voting pilot to be discontinued. URL: https://www.regjeringen.no/en/
aktuelt/Internet-voting-pilot-to-be-discontinued/id764300/ (visited on 05/08/2020).

[32] Regjeringen.no. The main features of the Norwegian electoral system. URL: https://www.regjeringen.no/
en/topics/elections-and-democracy/den-norske-valgordningen/the-norwegian-electoral-

system/id456636/ (visited on 05/08/2020).

[33] Secure Shell. URL: https://www.ssh.com/ssh/ (visited on 07/27/2020).

[34] Judith Simon. “Trust”. In: Pritchard, D. (Ed.): Oxford Bibliographies in Philosophy. New York: (2013).
URL: https : / / www . oxfordbibliographies . com / view / document / obo - 9780195396577 / obo -
9780195396577-0157.xml (visited on 05/22/2020).

[35] William Stallings and Lawrie Brown. Computer Security, Principles and Practice. Fourth Edition. Pearson,
2018. ISBN: 978-1-292-22061-1.

[36] National Institute of Standards and Technology. NIST. URL: https://www.nist.gov (visited on
07/27/2020).

[37] Melanie Volkamer, Oliver Spycher, and Eric Dubuis. “Measures to Establish Trust in Internet Voting”.
In: (Sept. 2011).

[38] What is the the random oracle model and why is it controversial. URL: https://crypto.stackexchange.
com/questions/879/what- is- the- random- oracle- model- and- why- is- it- controversial

(visited on 07/19/2020).

[39] Wikipedia. Data transfer object. URL: https://en.wikipedia.org/wiki/Data_transfer_object
(visited on 06/08/2020).

[40] Rima Wilkes and Cary Wu. “Ethnicity, Democracy, Trust: A Majority-Minority Approach”. In: Social
Forces 97 (1 2018), pp. 465–494.

[41] Arthur M. Wolfson. “The Ballot and Other Forms of Voting in the Italian Communes”. In: The American
Historical Review 5.1 (1899), pp. 1–21. ISSN: 00028762, 19375239. URL: http://www.jstor.org/stable/
1832957.

Page 42 of 45

https://www.bouncycastle.org/index.html
https://www.bouncycastle.org/index.html
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://site.mockito.org/
https://www.nemid.nu/dk-da/
https://www.norge.no/en/service/minid
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/security/SecureRandom.html
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/security/SecureRandom.html
https://www.britannica.com/topic/electronic-voting
https://www.regjeringen.no/en/aktuelt/Internet-voting-pilot-to-be-discontinued/id764300/
https://www.regjeringen.no/en/aktuelt/Internet-voting-pilot-to-be-discontinued/id764300/
https://www.regjeringen.no/en/topics/elections-and-democracy/den-norske-valgordningen/the-norwegian-electoral-system/id456636/
https://www.regjeringen.no/en/topics/elections-and-democracy/den-norske-valgordningen/the-norwegian-electoral-system/id456636/
https://www.regjeringen.no/en/topics/elections-and-democracy/den-norske-valgordningen/the-norwegian-electoral-system/id456636/
https://www.ssh.com/ssh/
https://www.oxfordbibliographies.com/view/document/obo-9780195396577/obo-9780195396577-0157.xml
https://www.oxfordbibliographies.com/view/document/obo-9780195396577/obo-9780195396577-0157.xml
https://www.nist.gov
https://crypto.stackexchange.com/questions/879/what-is-the-random-oracle-model-and-why-is-it-controversial
https://crypto.stackexchange.com/questions/879/what-is-the-random-oracle-model-and-why-is-it-controversial
https://en.wikipedia.org/wiki/Data_transfer_object
http://www.jstor.org/stable/1832957
http://www.jstor.org/stable/1832957

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

A. Glossary and Acronyms
Glossary

BigInteger Immutable arbitrary-precision integers. All
operations behave as if BigIntegers were repre-
sented in two’s-complement notation (like Java’s
primitive integer types). [...] The range must be
at least 1 to 2500000000 - [2]
23–26

Bridge Pattern "This pattern decouples the interface of
a class from its implementation. It serves the
same purpose as the Adapter pattern except that
the developer is not constrained by an existing
component." - [5]
19

Challenge A compilation of equations that is used
for verification from one party to another. A
challenge is met with a challenge response,
and if the response is correct, then verifica-
tion is a success. An example of a challenge
is to send a value, and then the recipient
should create a new value that is expected
by the sender.
10–12

CHVote "CHVote : a public system, Swiss and open
source. The electronic voting system CHVote
is a concrete answer and a real breakthrough in
digital technology and e-government." - [15]
3, 15–18, 36, 37, 39, 40

Ciphertext This is the scrambled output of a message
produced as output. It depends on the plaintext
and the secret key. For a given message, two
different keys will produce two different cipher-
texts. - [35]
19, 23, 25–27, 29, 30, 45

Computational Diffie-Hellman Assumption Even
for an adversary with all publicly ex-
changed values, group and group ele-
ments in the Diffie-Hellman key-exchange,
it would still be infeasible to correctly find-
/guess the secret key exchanged between
the partners. - [35]
9

Data Transfer Object "In the field of programming a
data transfer object (DTO) is an object that car-

ries data between processes. The motivation for
its use is that communication between processes
is usually done resorting to remote interfaces
(e.g., web services), where each call is an ex-
pensive operation. Because the majority of the
cost of each call is related to the round-trip time
between the client and the server, one way of
reducing the number of calls is to use an object
(the DTO) that aggregates the data that would
have been transferred by the several calls, but
that is served by one call only." - [39]
19, 28, 45

Denial of service "The denial of service prevents or
inhibits the normal use or management of com-
munication facilities. This attack may have a
specific target; for example, an entity may sup-
press all messages directed to a particular desti-
nation" - [35]
7

Diffie-Hellman The first published public-key algo-
rithm created by Diffie and Hellman from
1976 and is used as a key exchange tech-
nique. The algorithm enables two users to
exchange a secret key, which can be used to
encrypt subsequent messages. - [35]
13

Direct Democracy "Direct democracy, also called pure
democracy, forms of direct participation of citi-
zens in democratic decision making, in contrast
to indirect or representative democracy. Direct
democracies may operate through an assembly
of citizens or by means of referendum and initia-
tives in which citizens vote on issues instead of
for candidates or parties." - [4]
3, 4

E-Voting "Because of security and access concerns, most
large-scale electronic voting is currently held
in designated precincts using special-purpose
machines. This type of voting mechanism is
referred to as e-voting. There are two major
types of e-voting equipment: direct recording
electronic (DRE) machines and optical scanning

Page 43 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

machines." - [30]
4, 5, 44

Electronic Voting "Electronic voting, a form of
computer-mediated voting in which voters make
their selections with the aid of a computer. The
voter usually chooses with the aid of a touch-
screen display, although audio interfaces can be
made available for voters with visual disabilities.

There are two quite different types of electronic
voting technologies: those that use the Internet
(I-Voting) and those that do not (E-Voting)." -
[30]
4

Global Random Oracle Model The Random Oracle
model is a function that takes an input and
returns a truly random output. Two differ-
ent inputs can never return the same result,
but the same input will always return the
same output. - [38]
A Global Random Oracle instance is acces-
sible by all parties. - [9]
9

HTTPS A secure protocol to communicate over net-
works that uses TLS to ensure the security.
37

I-Voting "As use of the Internet spread rapidly in the
1990s and early 21st century, it seemed that
the voting process would naturally migrate
there. In this scenario, voters would cast their
choices from any computer connected to the In-
ternet—including from their home. This type
of voting mechanism is sometimes referred to as
I-voting." - [30]
3–5, 44

Insecure platform problem A common problem in
electronic voting, where computers can be
infected by malicious users and therefor
cannot be trusted. This is resolved by for
example using voting cards or other forms
of Multi-Factor authentication to make sure
that the computer is not the only party in-
volved.
15, 37

IntelliJ IntelliJ IDEA is an integrated development
environment written in Java for develop-
ing computer software. It is developed by

JetBrains, and is available as an Apache 2
Licensed community edition, and in a pro-
prietary commercial edition.
33

Key Pair A set of keys containing one Secret Key and
its corresponding Public Key.
10, 11

Library A collection of functions and methods in a
program. Libraries can be either internal,
where they have been written by the pro-
grammer or external where the program-
mer uses code that has been written by
another programmer, group or institute.
An example of external libraries could be
Bouncy Castle, that is code already written
and tested by others, and offer a vast collec-
tion of functions for a programmer.
9, 13, 14, 38

Man-in-the-Middle Attack "[...] this attack involves
persuading a user and an access point to believe
that they are talking to each other, when in fact
the communication is going through an inter-
mediate attacking device. - [35]
36

MinID "MinID is an an electronic ID which provides
access to public services at a medium-high level
of security (level 3)." - [28]
7, 36

Multi-Factor authentication MFA is used by a user
in a system to authenticate themself with
more means then one. This could be using
both a password and a fingerprint.
37, 44

NemID "NemID is a secure joint log-in service for both
public and private selfservice solutions." - [27]
37

NIST "The National Institute of Standards and Tech-
nology (NIST) was founded in 1901 and is
now part of the U.S. Department of Commerce.
NIST is one of the nation’s oldest physical
science laboratories. Congress established the
agency to remove a major challenge to U.S. in-
dustrial competitiveness at the time—a second-
rate measurement infrastructure that lagged be-
hind the capabilities of the United Kingdom,
Germany, and other economic rivals." - [36]
13

Page 44 of 45

Bachelor Project Spring 2020
SBEH & OLAS

Digitisation of Elections
Oblivious transfer in voting protocols

17th August 2020
IT University of Copenhagen

Oblivious Transfer "Oblivious transfer (OT) is a fun-
damental cryptographic primitive that serves a
building block for a number of interesting ap-
plications, such as secure two-party and multi-
party computation." - [9]
2, 3, 7, 9, 15, 18, 19, 21, 32, 35, 37, 40, 45

Public Key A key used for encryption of plaintext
that can be decrypted by its corresponding
Secret Key.
10, 11, 16, 23–25, 37, 44, 45

RSA "One of the first public-key schemes was developed
in 1977 (...). The RSA scheme has since that
time reigned supreme as the most widely ac-
cepted and implemented approach to public-key
encryption." - [35]
13

Secret Key A key used for decryption of a Ciphertext
that has been encrypted by its correspond-
ing Public Key.
10, 11, 23–25, 44, 45

Seed A value used to generate other values. If two
seeds are identical, they will generate the
same values. An example of seeding could
be for a random generator that will gener-
ate different random values depending on
the seed that is used.
14

SOLID-principles SOLID has five principles that if
followed ensures that the code is flexible,
robust, and reusable. This is achieved by
adhering to the following:
Single responsibility: “a class should only
have one, and only one, reason to change.”

Open/closed: “You should be able to extend a
classes behaviour, without modifying it.”
Liskov substitution: “Derived classes must be
substitutable for their base classes.”
Interface segregation: “Make fine grained in-
terfaces that are client specific.”
Dependency inversion: “Depend on abstrac-
tions, not on concretions.” - [24]
19, 21

SSH "The SSH protocol uses encryption to secure the
connection between a client and a server. All
user authentication, commands, output, and file
transfers are encrypted to protect against attacks
in the network." - [33]
13

TCP TCP is used to provide the communication ca-
pabilities of the internet in a form that is
useful for applications.

"It provides reliable delivery of arbitrarily long
sequences of bytes via stream-based program-
ming abstraction. The reliability guarantee en-
tails the delivery to the receiving process of all
data presented to the TCP software by the send-
ing process, in the same order." - [7]
19, 20

TLS "TLS is designed to make use of TCP to provide a
reliable end-to-end secure service." - [35]
13, 44

Universally Composable "The Universal Composabil-
ity (UC) framework is one of the most widely
used methodologies for analysing protocol secu-
rity under arbitrary composition." - [9]
9

Acronyms

BC Bouncy Castle 9, 13, 14, 38, 39

DRV Digital Remote Voting 4, 6, 7, 15, 35, 36, 39, 40
DTO Data Transfer Object 19, 20, 28,

Glossary: Data Transfer Object

ECC Elliptic Curve Cryptography 9, 13, 38

ECOT Efficient Composable Oblivious Transfer 2, 9,
19–22, 25–29, 33, 34, 40

ECPoint Elliptic Curve Point 21, 23–31

OT Oblivious Transfer 2, 3, 7, 9, 15, 18, 19, 21, 32, 35,
37, 40,
Glossary: Oblivious Transfer

Page 45 of 45

	Introduction
	Digital voting
	Trust
	History
	Digital voting in Norway
	Constraints and problems

	Technologies
	Oblivious transfer
	Efficient composable oblivious transfer
	With selective failures
	Without selective failures

	Elliptic curve cryptography
	Bouncy castle
	Java

	CHVote
	History of CHVote
	Overview of the protocol
	Parties
	Phases

	The voting card
	How CHVote makes use of oblivious transfer

	Implementation
	Architecture
	Overview of the combined systems
	Receipt generator
	Cryptosystem
	Client
	Server

	Voting simulator
	Ballot box
	Voter
	Descryption service

	Test strategy
	Unit testing
	Integration testing
	System testing

	Running the program

	Discussion
	Physical card verification vs. computer only verification
	Verification on the used device vs. another device
	Authentication
	Problems with communication
	Network security
	Performance and bottlenecks
	The problem with building trust

	Conclusion
	References
	Glossary and Acronyms

