Generation of Stable Structures using Neural Cellular Automata

Lucas Petersen, Mikkel Ditlevsen, Oliver Astrup
lupe @itu.dk, midi @itu.dk, olas@itu.dk
Modern Artificial Intelligence
KGMOARIIKU

Abstract

Neural cellular automata has previously been applied
most often to a 2D domain. Recent research has shown
that they can also be effective if extended to a 3D en-
vironment, and have been capable of generating struc-
tures in such a space. This paper presents a use case
for generating 3D structures which have some particular
properties. Specifically, being stable under the force of
gravity. This is done by using neural cellular automatas,
trained via an evolutionary search algorithm, to gener-
ate 3D structures. These structures are evaluated based
on a fitness function that utilises Unity’s physics engine
to simulate the force of gravity on the structure. This is
an early stage of experimentation, but the end goal is to
have NCAs that are capable of generating stable struc-
tures that could be useful for procedural content gener-
ation in games and other virtual 3D environments. This
paper shows that NCAs are capable of generating these
structures, though more work needs to be done before
these NCAs can be used for procedural content genera-
tion.

Introduction

NCAs (Neural Cellular Automata) are a specific kind of
CAs. Traditionally CAs has been used in a 2D environment,
where a small set of simple rules, governs the evolution of
cells in a grid. Probably most famously to the general public
as Conway’s Game Of Life (Gardener, 1970). NCAs differ,
because the rules are no longer specified, but instead a neu-
ral network governs the rules. The network takes as input a
grid of cells, and output the sames grid of cells with an up-
date applied by the network. NCAs can in principle be used
to generate anything that can be represented in a grid-like
structure, and is not contained to only 2 dimensions.

This paper will present an attempt to use NCAs to gener-
ate 3D structures that are stable under the force of gravity.
The structures will be a set of vertices represented as solid
spheres in a 3D space, connected by a set of edges repre-
sented as solid cylinders. For simplicity the structure will
only be able to break under gravity at the connection be-
tween the cylinders and the vertices.

Though this paper presents the early stages of experimen-
tation, this could be relevant to for example procedurally
generating structures in games and other virtual 3D envi-
ronments.

Background

The generation of structures using an NCA has been shown
to work previously by Sudhakaran et al. (2021), where an
NCA has been trained on the reconstruction of both simple
and complex structures within the game of Minecraft. This
project made use of the 3 dimensional grid of Minecraft to
represent the entities that it was trying to reconstruct, and
represented each cell in the grid separately. In that case and
also typically, the NCAs have been trained by supervised
learning using gradient descent. Another good example of
using gradient decent is by Mordvintsev et al. (2020), in
which they use a convolutional neural network combined
with different per cell operations to reach their goal of gen-
erating self-repairing 2D images. This is however not feasi-
ble for this project, as a large dataset of the structures this
project should generate does not exists, and therefore loss
functions aren’t an option.

Using unsupervised learning to train NCAs has been
shown to work by Earle et al. (2021), in which they used
an evolutionary quality diversity algorithm to train an en-
semble of NCAs for generating 2D levels for games. This
project was inspired by their approach, although quality di-
versity isn’t used in this project

The idea of using evolutionary search algorithms to train
neural networks (neuroevolution) is not new, and there exists
a range of different approaches and methods. A collection
of some of these can be found in a paper by Floreano and
Mattiussi (2008), which summarises and categorises them.
Although neuroevolution can be used both for evolving the
topology of the network and the hyperparameters, this paper
focuses on the latter.

During the research for this paper no previous papers were
found that uses neuroevolution to evolve NCAs capable of
generating 3D structures which are stable under gravity.

Implementation

This section will describe the implementation of the project
and the methods that were used. It will also go into detail
about some of the previous implementation attempts and ex-
plain why they didn’t work or why it was decided to change
them.

The Physics Environment

To test the stability of the structure, simulations of the force
of gravity being applied to the structure was used. The sta-
bility results are then used for evaluating each NCA. To run
the simulation the Unity game engine (Unity Technologies,
2005) was chosen, even though it contained many elements
that would not be needed for this implementation. It did
contain its own physics engine that was easy to access and
can be turned on and off when it’s needed, so that physics
would only be applied when the structures were evaluated.
Thereby the structures did not have to be stable when the
NCA was generating them, but only once a structure was
finished. Also, Unity’s implementation of FixedJoints were
useful for attaching the edges to the vertices and have them
break at specific force thresholds.

What was also gained from using a game engine, was the
availability of multiple other inbuilt functions to optimise
the environment like object pooling, debugging tools and the
availability of the unity asset store. Also unity allows for
the increase of its time scale in the physics engine, thereby
allowing the simulations to run even faster.

Neural Network & Structure Representation

The first idea for how to represent the structures was as a
graph. The structure is essentially just a graph of vertices
and the edges between them. Unfortunately, this simple rep-
resentation proved to be infeasible for generating structures
in 3D space, as the representation completely disregarded
any idea of spatiality. A vertex directly next to another ver-
tex in space, would not be conveyed to the NCA as the repre-
sentation would only allow you to know which vertices was
connected to each other, and not where in space they would
reside. This would make it difficult for the NCA to learn
to connect nearby vertices together. Therefore this approach
was abandoned.

To include spatial awareness, the area in which the struc-
ture was to be built was divided into a discrete grid with a
constant specified length between the center of each cell in
the grid. To represent the structure in this grid a representa-
tion was devised that had 14 one-hot encoded 3-dimensional
arrays. One of them would contain the positions of the ver-
tices, and the 13 remaining arrays were needed to represent
the connections. This initially seemed like a good represen-
tation, and it allowed for the use of a convolutional neural
network for the NCA as done by Mordvintsev et al. (2020),
where each 3-dimensional array would be one of the input
channels. Unfortunately this CNN grew very quickly in size,
and even restricting the size of the grid to be a square with
side length 50, it still needed to allocate multiple terabytes
of memory for storing all the weights and biases. This is
due to the fact that the input size of the network would be

O,

Figure 1: Representation of a 2D structure as a 2D local. The
locals are for vertex 0.

Figure A are the two input arrays with vertex positions at the
top and connections at the bottom. Notice that vertex 4 is not
included here because it is outside the reach of the local.
Figure B is the structure that is represented.

Figure C represent the output structure where only the ver-
tex positions are included as the connections to vertex 0 are
implicit. Notice that vertex 0 is omitted in both input arrays
and the output array.

1.750.000. For this reason, it was decided to not use this
representation.

The final representation for the structures ended up be-
ing a mix of the two approaches described above. The struc-
ture is represented as a graph, using an adjacency list. Each
vertex in the list also stores its position in space. Thereby
it is possible to convert from the graph representation to
the grid representation, and give this as input to the NCA.
When inputting the structure to the NCA, it would iterate
over each vertex in the structure and convert it, to what the
authors named a local. A local is a 4-dimensional array that
represents a vertex’ local surroundings. It is essentially two
one-hot encoded 3-dimensional arrays, that each represents
a 3-dimensional square grid with side length 3 around the
vertex. The first array represents the presence of vertices,
and the second array indicates whether a connection exists
between these vertices and the vertex whose local it is. This
representation is what is given as input to the NCA. The out-
put is very similar. The only difference is that the array that
represents the connections between vertices have been omit-
ted, and instead it is assumed that every vertex present in the
local, is connected to the vertex whose local it is. An exam-
ple of a small 2D structure and the input and output locals
corresponding to it can be seen in figure 1
Given this representation it has been possible to keep the
neural network of the NCA quite simple. The structure of the
neural network can be seen in figure 2. It is a fully connected
network with an input layer of size 52. This corresponds
with the size of a local. Two 3D arrays of size 3, with the
middle entry omitted in both because the vertex whose local
itis, is implicit ((3%3%3—1)=2). It has an output layer of size
26 as this corresponds to an output local as explained earlier.
Finally, it has a hidden layer of size 60, which corresponds

Layer Size: 52 60 26

Network:

W

Activation: Relu Sigmoid

Figure 2: Structure of the neural network.

to 2 thirds of the input size + the output size. The choice
for the size of the hidden layer and the number of hidden
layers has been made because these parameters should be
good enough for most purposes (Krishnan, 2021). The same
reasoning is behind the activation functions. The activation
function of the hidden layers is relu, and the activation func-
tion of the output layer is sigmoid. Further discussion of the
topology of the neural network and the activation function
can be found in the section Discussion & Future Work.

For the implementation of the neural network, different li-
braries was tried, instead of making an implementation from
scratch. One version made use of the library TensorFlow
(Google Brain, 2021) for python, as this is a well known li-
brary that can also run on the graphics card, though since the
scripting language of Unity was C#, several layers needed
to be added between them to make it work. Even though
Unity have added python scripting to new versions of their
engine, it would still not work with outside libraries. Tensor-
Flow also has a C# version called TensorFlowSharp, how-
ever this library did not work with the version of .Net used
by the Unity engine. In the final implementation a neural
network implementation designed for Unity called Noedify
(Tiny Angle Labs, 2020) was used. It had a simple and use-
ful interface that allowed for multiple different architectures
for neural networks as well as access to all data stored in the
network at any time, which was needed for the neuroevolu-
tion algorithm.

Evaluation

In order to evaluate the structures created by the NCAs, and
by extension evaluating the NCAs themselves, it was re-
quired to be able to simulate whether or not the structures
were stable. This was done by using the Unity physics en-
gine, as described previously. The graph representation of
the structures produced by the NCAs was converted into
Unity GameObjects. Each vertex became a sphere and each
edge a cylinder connecting two spheres. All with their own
rigidbodies, so they were able to be affected by the physics
engine and would react to collisions. The Unity component
FixedJoint was used to create the physical link between the
cylinders and spheres. The FixedJoint component restricts
another objects movement to be dependant on another ob-
ject. This is similar to parenting but is implemented through

Figure 3: A structure that is 4 vertices tall with a support
structure.

physics instead of the Transform hierarchy. The advantage of
using a FixedJoint was that it comes with all the properties
that were needed for evaluating the structural integrity. One
of these properties was the BreakForce, which determines
how much force the joint can sustain before breaking. For
example at a BreakForce of 52.5, which was the force used
in the project, a structure four vertices tall would break under
its own weight, but if supported properly as shown in figure
3, the force on the lower links was alleviated by the sup-
port and could therefore stand without breaking. This value
was found by building different structures that was either ex-
pected to stand or fall, and then the simulation was run with
different break forces, until one was found that gave the ex-
pected results.

The idea behind the evaluation with these components
was to simulate the force of gravity being applied to the
structure for an appropriate amount of time in Unity. Then
evaluating how many of the joints broke. However, more
metrics than structural integrity were necessary to create in-
teresting structures, since a maximum score in structural in-
tegrity could be reached by a trivial case of two vertices con-
nected by a single edge. Therefore two more metrics were
added to the evaluation.

One metric was determined by the height of the struc-
ture, so the NCAs would get better results if their structures
were higher after the physics simulation was completed.
This should yield a better evaluation score, compared to a
completely flat structure, that might have no broken joints.
In the implementation this was calculated as the difference
between the highest and lowest vertex along the y-axis of the
world coordinate system.

The other metric sought to capture the complexity of the
structure and was used in an attempt to make the NCAs
create more complex structures. Different calculations was
tested for this metric, that were all dependent on the amount
of vertices and edges and the difference between them, but
in the final version it turned out a simple count of how many
vertices the structure used provided a fine complexity metric
for the evaluation.

To calculate the final evaluation score for a structure, each

of the three metrics discussed above were used in the calcu-
lation. Weights for the height and complexity metrics was
also introduced, to allow for more control during testing of
how much they should impact the final result, in the final im-
plementation both of these values were set to 1. The formula
used in the end was:

Q=T+Wr+«H+W.xC)x1I

Where I is the integrity metric, H is the height metric, C is
the complexity metric and W}, and W, are the weights for
height and complexity respectively.

By scaling the height and complexity metrics by the in-
tegrity metric, the NCA has a higher focus on creating stable
structures, and only once the integrity reaches a certain level
will height and complexity be relevant. This scaling was
introduced because the NCAs otherwise would completely
disregard integrity, and simply just try to maximise height
and complexity, which results in creating as many vertices
as possible.

Evolution

Backpropogation was quickly dismissed as a possibility, and
therefore neuroevolution was used instead to train the NCAs.
Since only the weights and biases of the neural networks and
not the topology should be evolved, a direct representation
was chosen for the genome (Floreano and Mattiussi, 2008).
The following sections will detail the implementation of re-
combination and mutation of the neural networks.

Population and Parent Selection For the evolution popu-
lation, a size of 100 with a parent size of 20 was chosen. This
meant that the population would consist of 100 randomly
weighted neural networks at the beginning. Then, for each
evolution the 20 networks with the best evaluation score was
kept and the other 80 discarded. After selecting the parents
they would be used as basis for the recombination and mu-
tation algorithms. As opposed to discarding the parents for
more mutations and recombinations the parents was kept for
the next generation, only mutating and recombining 80 new
networks.

Recombination The recombination algorithm saw a lot of
iterations. At first an attempt to use the biases of one parent
and the weights of another was dismissed, since it allowed
for almost no permutations of the parents when there were
only a single hidden layer. Another attempt was to only take
half of the biases of one parent and combine with half of the
biases from the other parent and likewise for the weights.
This approached seemed more in line with the general idea
of recombinations, since it takes half the genes of a parent
and half the genes of another. However, this had the same
result as simply randomising the neural network. Finally, the
solution that was the most promising one, was to pick two
parents, then pick a neuron in the hidden layer and swap
it around between the parents (as well as all its associated
weights and biases) creating two new children per swap.
Although this seemed more promising at first, once the
other hyperparameters were tuned, this approach also proved
to be almost no better than generating completely random
networks. It seems even the switch of a single neuron had

a vast impact on the entire network. A solution could have
been to only swap some weights of a single neuron between
two parents, but this became closer and closer to mutation,
and thus, recombinations were abandoned in the final ver-
sion.

Mutations The mutation algorithm is implemented as de-
scribed by Eiben and Smith (2013), where selected parents
produce stochastic modified version of themselves. In the
case for the neural networks presented in this project, there
was a focus on creating an algorithm that could mutate any
fully connected feed forward network regardless of input
size. This resulted in an algorithm that could change the
weights and biases of a parent in arbitrary layers, but dis-
regard the rest of the parents architecture.

When the algorithm runs it selects a random network from
the parents for mutation. Then it selects a percentage of the
biases in each layer and modifies each of them by a stochas-
tic value, found within a given range. The range of the mod-
ifications of the biases has been set to a maximum range
of [—0.25;0.25]. This range was set, since it was the same
range used to set the biases for randomly generated networks
in Noedify, so if networks were set to a maximum percent-
age and modification range, it would be equal to generating a
completely new network. The same process was used for the
selection and modification of weights in the networks, the
only difference being that in the neural network’s represen-
tation of the weights, were implemented as two-dimensional
arrays.

Results

The following section will go over the results of the experi-
ments that have been run and explain how the hyperparame-
ters were tweaked to try to reach the best performance pos-
sible.

All experiments were done with a maximum of five itera-
tions. This means that the graph was run iteratively through
the NCA five times, before the structure was built in Unity
and then evaluated. The reason five was chosen, was that if
the iterations were set too low the latent space of possible
structures to create became very small, which makes for un-
interesting results. On the contrary, with too high maximum
iterations, the latent space becomes very large, and the sim-
ulation time of the structures slows down the evolution quite
a bit. As such the perfect balance was reached with a maxi-
mum of five iterations.

The largest test that was run was a 40 hour experiment
with a population of 100. The experiment produced very
predictable results and helped confirm speculations like the
evaluation function being adequate. As previously men-
tioned, the evaluation function multiplies the height and
complexity with the integrity metric which is normalized.
This means that if the structure is not structurally stable, it
will not matter how complex or high it is. Therefore the hy-
pothesis was that the evolution would gradually create struc-
tures with a higher and higher integrity score until it finally
reaches a score of 1, at which point it will begin expand-
ing the structure as well as building upwards to maximise
both height and complexity. This was what happened and is

Figure 4: From left to right: Spawn number 6135, Spawn number 7480, and Spawn number 28577.

shown in figure 4.

It starts by gradually increasing the integrity. On the first
picture (from left to right), spawn 6135 is seen, which is
close to reaching an integrity of 1, but still has some bro-
ken joints due to some of the structure falling when being
simulated. On the next picture spawn 7480 is seen, the first
member of the population to reach an integrity of 1. Here
it can be seen that it has created a strong foundation, and
can now start to build upwards and outwards without the in-
tegrity negatively affecting the height and complexity met-
rics. Finally, spawn 28577, the final structure of the 40 hour
test. Not only has the structure started building upwards, but
it has also connected many of the vertices in the higher layer,
which gives it the structural support it needs to keep building
upwards. This was even conceptualised by the vertex stick-
ing up in the back of the picture, showing that it was ready
to start creating vertices on the third layer.

Benchmark

This section will look into the runtime of the different parts
of the implementation and describe the largest bottlenecks.
One of the problems with the evolution algorithms was that
iterations were very slow. When the integrity was less than
1, it was often because the structure was quite large and had
so many vertices that it crumbled under its own weight. As
mentioned before, in the large experiment, an integrity of 1
was reached at spawn 7480, which was created in the 93rd
evolution iteration. This means that up until about the 100th
iteration, the NCAs are creating enormous graphs that have
to be simulated, which was the biggest bottleneck when run-
ning the evolution.

In table 1 the results of the benchmark tests are shown.
As can be seen the Evaluator, which runs the physics simu-
lation, is by far the part of the algorithm that takes the most
time. It is also evident how big a difference the average in-
tegrity of the population plays. Going from 2044 seconds to
131 seconds as the integrity increases. It is important to note
here that it is not the integrity per say that makes the differ-
ence, but the fact that an initial high integrity is synonymous
with smaller structures. And the fewer vertices a structure
has the faster it is to simulate.

Special rules

As can be seen in table 1, once an integrity score of 1
is reached, much smaller and self-contained structures are
built. This means, that after this point the speed of the sim-
ulations increases significantly. Therefore experimentation

Figure 5: Evolution with activation cutoff at 0.6, Spawn
number 381.

Figure 6: Evolution with activation cutoff at 0.6, Spawn
number 5800.

with adding rules that could make the NCA reach an in-
tegrity of 1 faster was initiated. The first experiment was to
increase the cutoff rate, for when an output neuron is con-
sidered active. This helped by lowering the initial amount
of vertices in the random networks and as such greatly in-
creased performance, both in speed and in evaluation. With
fewer vertices it was possible to reach structures with an in-
tegrity of 1 faster. Some of the results from these experi-
ments are shown in figure 5 and 6.

As shown in figure 6, the NCA reached a height of four
vertices, which, as was explained earlier, was only possi-
ble, if there was a supportive structure that holds the tower”
with more than one vertex. The problem with changing the
activation cutoff was that, much like lowering the maximum
iterations, it shrinks the latent space as it puts a restriction
on the number of vertices.

Another rule was to not allow the NCA to build down-

Neural Network Unity Graph

Evaluator Average Evolution Total runtime for 1 iteration

Build Average Build Average
Average Integrity <0.5 1.46 0.48 25.06 1.21 2044.41
Average Integriy >0.5 0.98 0.28 11.99 0.41 1060.41
Average Integrity = 1 0.20 0.02 1.42 0.05 131.25

Table 1: Table of benchmark test results measured in seconds. Each iteration have been done with a population size of 100,
parent size of 20, 30 seconds of physics simulation and five iterations through the NCA per structure.

Figure 7: A structure that is about to fall down when simu-
lated. The center of this structure has y position 0.

wards. This was a global rule, and breask the idea of using
an NCA. The rule was that if the network wants to place
a vertex beneath the global y coordinate of 0 it was disal-
lowed. This means that it was not only looking at locality
but also the vertex’ global position. The reason for experi-
menting with this rule, was that when the network tried to
build downwards, it would often build very unstable struc-
tures, that might have been fine, if it hadn’t build down such
as the one shown in figure 7. Here the center of the structure
has y position 0, meaning that it would probably have been
a stable structure, if it had not built downwards.

In figure 8 a structure was created with the ’no build down”
rule. An interesting thing to note, is that this structure looks
a lot like the one created at the end of the long experiment.
The difference here is that the structure from the long test
had spawn number 28577, while this no build down” struc-
ture has the spawn number 6811. So it requires almost 4
times fewer iterations to reach a similar result to the long
experiment by introducing this rule. However, as should be
evident by introducing a rule that removes vertices if they
cross some arbitrary rule, is that the structures it generates
contains far fewer vertices than the structures from the long
experiment.

Average Height

Another experiment was to change the height evaluation to
look at average height instead of total height. The idea was
that since structures higher than 3 requires more support, this
can be achieved by having 3 towers of height 3 and connect-

Figure 8: Structure build with “’no build down” rule. Spawn
number 6811.

Figure 9: Structure evolved with the average height evalua-
tion.

ing them all to a fourth tower at height 4. In order to do so,
the NCA needs to evolve towards a structure that has more
than one point in max height. Therefore the idea of evaluat-
ing with average height was introduced. The result as seen in
figure 9, is not what was aimed for. The NCA simply learned
that by creating a small foundation and then building up it
could achieve a really high average height evaluation score.

Summary

To summarise, the NCAs produced with the best perfor-
mance in terms of integrity and complexity was by far the
ones produced by the 40 hour experiment. Though great im-
provements to performance in terms of runtime complexity
could be achieved by tinkering with things such as global
rules and different activation cutoffs for neuron activation,
it seems that letting the NCA evolve with no guidance but
the fitness function produces the best results. However, even
with a 40 hour experiment the structures never reached a

height of 4 vertices, which was something that was achieved
in the other experiments with a higher activation cutoff. This
could be explained as a tradeoff between the complexity and
the height, since when you have more vertices you have a
higher risk of your upwards advancement to have an unin-
tended negative effect in other parts of the structure. There-
fore, structures that are smaller and less complex, will have
an easier time evolving towards a larger height.

Discussion & Future Work

This section will further discuss the implementation details
from the previous section, looking into alternate solutions
for the implementation choices that were made. It will also
reflect upon what the future work of the project would entail.

Learning Strategies

This project has been using an evolution strategy to cre-
ate networks, which has had some effects on the NCA. By
using an evolutionary search algorithm on a population of
networks instead of training a single network, multiple net-
works had to be created which all took time to create, run
and destroy. One of the problems with the evolutionary strat-
egy is to determine appropriate values for recombination and
mutation. Both of these can result in what behaves as new
random networks if their parameters have been set too high,
rather than using learning to change the network a little bit
over time. And as explained earlier, a recombination algo-
rithm that didn’t result in this behaviour was never imple-
mented.

It is worth considering other learning strategies, as there
are multiple other techniques to train neural networks. One
technique that could also have been used would be super-
vised learning with backpropagation, where the network
would be trained on data with known results and compare
this to the prediction made by the network (Han et al., 2012).
This would require being able to calculate diffenrentiable
loss functions. Since there is no way to determine what the
best outputs for a given input should be, as this is exactly
what this project was trying to discover, it would not be pos-
sible to use supervised learning.

Another strategy that works quite similar to the evolution
is reinforcement learning, in this environment the network
would be able to make a decision on where to grow vertices
and edges and would then get an instant response depend-
ing on the current policy (Yannakakis and Togelius, 2018).
It would be interesting to study the differences between us-
ing this technique with step-wise evaluation and reward as
opposed to the one implemented where only the final struc-
ture is evaluated. Though a proper policy needs to be created
to achieve the same result with higher structures that are not
necessarily symmetrical. This comparison would be one of
the next steps of the project.

Finally it should also be noted that the cost of generating
and destroying the numerous neural networks was insignifi-
cant, compared to the cost of simulating the force of gravity
on the structures.

Topology of Neural Network

All decisions regarding the topology of the neural network
was based solely on the common rules regarding such. These
rules are based in part on the authors’ own previous expe-
riences and knowledge of neural networks and in part on
and article by Krishnan (2021). This is also the case for the
choice of activation functions.

Due to the large amount of hyperparameters present in
the implementation (population size, mutation rate, struc-
ture representation etc.), and the limited time scale of this
project, it was decided not to focus on any hype parame-
ters of the neural network to reduce the number of different
permutations of all of these. Instead the focus was placed
on the hyperparameters of the evolution algorithm, evalua-
tion strategy and structure representation to limit the scope
of the project.

Experimenting with the neural networks hyperparame-
ters is a very obvious next step for the future work on this
project. Testing different number of hidden layers with more
or fewer neurons, and different activation functions could
have a large effect on the different kinds of structures the
NCAs are able to generate. It could also have been interest-
ing to study the effect of disabling parts of the network, to
see if that would show better results. An approach similar
to dropout, where single neurons have a chance to be dis-
abled and the rest of the network still has to work without
them (Hinton et al., 2012). The interplay between this and
the evolution algorithm would also be interesting to study,
as this would introduce some stochasticity to the evolution.

It would also be interesting to let the evolution algorithm
also evolve the topology of the network. As stated previously
the algorithm only evolved the weights and biases of the net-
work. By also allowing the evolution to change the topol-
ogy of the network, it could possibly also find even better
networks than the single version that was designed for this
project.

Recombination

As described previously in the implementation section, dif-
ferent attempts were made to write a recombination algo-
rithm, that could work on neural networks. The failed im-
plementation attempts shows that recombination was almost
just like randomly creating new networks. This behaviour
is to be expected when making such drastic changes to a
network, as neurons in a fully connected network would be
very dependant on each other and different neurons would
learn different things. A project for the future could be to
study this aspect of recombination of neural networks in
more depth, to see if it could be possible to make it work

properly.

Physics Engine

The biggest bottleneck of the runtime cost of the implemen-
tation was the physics simulation. This is in part because the
simulation would have to run for a sufficiently long time,
such that the it wasn’t ended prematurely. Otherwise this
would result in false evaluation scores for structures that
broke slowly. It is also a result of the physics engine in unity

becoming quite slow, once a significant amount of vertices
and edges were present. Also, it was impossible to run the
simulations in parallel.

Even though Unity has the possibility of increasing the
time scale of the simulations, which was done, this was still
the biggest bottleneck.

Alternate solutions would include using a simpler physics
engine which only simulates the physics effects needed, and
thus should be able to run faster, and maybe in parallel. It
might also be possible to calculate the integrity of the struc-
ture using only mathematics, thereby removing the need for
any simulations, and in turn almost completely diminish the
runtime of the evaluations.

The reason the mathematical approach wasn’t used was
because none of the authors are familiar with that area of
mathematics, and the short time scale of this project didn’t
allow time to become familiarised with the subject. Sec-
ondly, it seemed like a good idea to actually use a physics en-
vironment for the evaluation since one of the long term goals
of this project is to make the generation of these structures
useful for procedural content generation in games. Therefore
it made sense to evaluate in the kinds of environments they
would end up in. As for the choice of the Unity engine as
the physics environment, this was mostly because this was a
physics environment the authors were already very familiar
with, and allowed the focus to be on the actual implemen-
tation of the NCAs. Had the restrictions of parallelisation
and the general runtime cost been known, another physics
environment would have been chosen.

Conclusion

This paper has shown that NCAs, trained via an evolution-
ary search algorithm, are capable of generating 3D structures
that are stable under the force of gravity. Though much more
work needs to be done before it can be applied in for ex-
ample procedural content generation, it is an important first
step. It seems very likely that further development of this
project could result in impressive structures that would be
useful in different virtual 3D environments. It also seems
likely that this project can be tweaked to not only generate
stable structures, but also structures with other traits, simply
by changing the evaluation function. Hopefully this paper
can serve as a small expansion of the current understand-
ing of what NCAs can be used for and open up the path for
further research into the generation of stable structures.

References

Earle, S., Snider, J., Fontaine, M., Nikolaidis, S., & Togelius,
J. (2021). INluminating diverse neural cellular au-
tomata for level generation.

Eiben, A. E., & Smith, J. E. (2013). Introduction to evolu-
tionary computing. Springer.

Floreano, D., & Mattiussi, C. (2008). Neuroevolution: From
architectures to learning. Evol Intell, 1.

Gardener, M. (1970). Mathematical games the fantastic

combinations of, john conway’s new solitaire game
“life”. Scientific America, 223, 120-123.

Google Brain. (2021). Tensorflow. https://www.tensorflow.
org/

Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts
and techniques. Elsevier.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., & Salakhutdinov, R. R. (2012). Improving neu-
ral networks by preventing co-adaptation of feature
detectors.

Krishnan, S. (2021). How to determine the number of lay-
ers and neurons in the hidden layer? [Accessed:
2021-16-12]. https://medium.com/geekculture/
introduction-to-neural-network-2f8b8221fbd3

Mordvintsev, A., Randazzo, E., Niklasson, E., & Levin, M.
(2020). Growing neural cellular automata: Differ-
entiable model of morphogenesis. Distill, 5.

Sudhakaran, S., Grbic, D., Li, S., Katona, A., Najarro, E.,
Glanois, C., & Risi, S. (2021). Growing 3d arte-
facts and functional machines with neural cellular
automata. Proceedings of the 2021 Conference on
Artificial Life.

Tiny Angle Labs. (2020). Noedify - easy neural networks.
https ://assetstore . unity . com/packages/tools/ai/
noedify-easy-neural-networks- 161940

Unity Technologies. (2005). Unity. https://unity.com/

Yannakakis, G. N., & Togelius, J. (2018). Artificial intelli-
gence and games. Springer.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://medium.com/geekculture/introduction-to-neural-network-2f8b8221fbd3
https://medium.com/geekculture/introduction-to-neural-network-2f8b8221fbd3
https://assetstore.unity.com/packages/tools/ai/noedify-easy-neural-networks-161940
https://assetstore.unity.com/packages/tools/ai/noedify-easy-neural-networks-161940
https://unity.com/

