
1 Introduction

This paper will give an overview of what tessellation is
and what it can be used for in within the field of graphics
programming. It also describes how to implement tessella-
tion shaders using OpenGL. This paper will also discuss
and show how this was implemented in the project.

The first section will give a broad overview of tessellation,
by explaining several elements that are independent from
implementation and what tessellation is used for. The sec-
ond section will go more in-depth with the OpenGL library
and how tessellation shaders can be implemented using
this specific library. Then the third section is for the pro-
ject, that was made together with this paper, it contains the
implementation of a tessellation shader using OpenGL and
the section explains how this was done and what it can do.
The last two sections are reserved for a conclusion on the
project and paper and what the next steps to improve it
would be.

2 What is Tessellation?

Tessellation is the process of subdividing surfaces into
smaller polygons, that can then be manipulated based on
different variables. The point of using tessellation is to
allow for the use of polygons with lower vertex counts to
increase their complexity during rendering and thereby
save resources. This technique is also used for implement-
ing level of detail in scenes, so models further away from
the camera will stay less detailed, without impacting the
quality of the scene, as they would be too far away to be
properly seen by the camera [1]. An example of this can be
seen in figure 1.

Figure 1: Example of level of detail

Another use of tessellation is during the use of expansive
meshes that expands over a large area. In cases like this the
mesh can be divided into different regions and regions
closer to the camera will need to be more detailed than
regions further away. Those will have lower, or no tessel-
lation applied to them. An example of this is shown in fig-
ure 2, where the grass and the tree closer to the camera is
more detailed than the same elements on the hill a bit fur-
ther back in the scene. Then with the mountain in the
background, the details are even lower, though the trees
and grass can still be seen.

It is important to note that all the calculations done using
tessellation is handed by the graphics hardware [4]. This
means that there will be a reduced load of system re-
sources due to lower number of calculations and storage
need because of the lower number of stored vertices.

Figure 2: Example of expansive mesh being divided.

One last interesting technique that is available due to
tessellation is to move the vertices along their normal
to create offsets in a model’s surface. This can be used
to make flat surfaces more interesting by moving
some of the vertices to make the surface appear to be
rugged. This can be done in connection to level of
detail, where the closer a camera is to the surface, the
more rugged it becomes. This is displayed in figure 3.

3 Tessellation in OpenGL

In OpenGL tessellation is one of the steps in the rendering
pipeline and is run right after the vertex shader. Though
unlike the vertex shader, the tessellation step is completely
optional and consists of three different stages: The Tessel-
lation Control Shader, Tessellation Primitive Generator
and Tessellation Evaluation Shader. To make use of tessel-

Exam Project – Tessellation Shaders

Graphics Programming
KGGRPRG1KU

Oliver Astrup

olas@itu.dk

lation in OpenGL only the Evaluation Shader is needed, as
OpenGL can use a default Control Shader that just copies
over information, though both are programmable, just like
the vertex and fragment shaders [2].

Figure 3: Example of offsets in surfaces. [4]

2.1 Patches

An important part of tessellation in OpenGL is the use of
patches. These are primitives that consists of several con-
trol points (vertices), that will be used to determine the
attributes of the new vertices. Figure 4 from the project
shows a simple example of this, by having a single triangle
with three vertices and a patch size of three. Resulting in
all the vertices being used to determine the position and
color of the new vertex. In this case the new point is an
average of the it’s control points, but that could change
depending on implementation.

Figure 4: Example of simple tessellation from project

The important thing to notice about patches is that their
size is depended on the implementation. The graphics
hardware determines what the maximum possible amount
of control points in a single patch can be, but it will always
be at least 32 [2]. This allows for some huge primitives for
better fine tuning of tessellation levels by using better in-
terpolation methods like bicubic interpolation.

Another type of patch in OpenGL is the abstract patch.
These patches are generated by the primitive generator,
depending on the input expected by the evaluation shader.
An abstract patch defines the connections of the vertices
after tessellation has been applied. These can either be
triangles as seen in figure 4, quads or isolines, depending
on implementation.

2.2 Control Shader

The first part of tessellation in OpenGL starts in the con-
trol shader. It is an optional shader and is there to provide
information about tessellation levels and any transfor-
mations to patches [2]. Since patches are not clearly de-
fined as polygons, but instead as a surface described by
these points, any changes made to a single control point,
will change to the whole structure of the surface, though
this is not always needed and can be omitted [3]. The other
attribute of the Control Shader is to provide tessellation
levels, these values determine how much tessellation
should applied to the patch. There are two different tessel-
lation levels, inner and outer, they both have a specific
purpose. The outer levels are used to determine how the
outer edges of the abstract patch should be divided, so if an
edge has an outer tessellation level of 4, it will divide the
edge into four smaller edges by creating three new vertices
along it. This is displayed in figure 5, where the left most
edge has been split into four distinct parts. It should also
be noted that the bottom edge has an outer tessellation lev-
el of one, resulting in no tessellation to be applied.

The inner tessellation level is a bit more unintuitive; it is
used to describe the number of times the space should be
subdivided inside the figure. In figure 5, the triangle has an
inner level of five, resulting in two new triangles. If the
level was lowered to four, the inner most triangle would be
just a single vertex instead and if the level was six, then a
new vertex would appear in the middle of the inner most
triangle.

Figure 5: Visualization of tessellation levels. [2]

2.3 Primitive Generation

With the input from the control shader, the primitive gen-
erator preforms the actual tessellation of the models. There
are several predefined variables that determine how this
stage works, the tessellation levels, spacing, output type
and winding order. The tessellation levels were described
in section 2.2 and output type (abstract patch) were de-
scribed in section 2.1.

For spacing there are three different types, equal spacing,
fractional odd spacing and fractional even spacing. Equal
spacing is the simplest form and is the spacing used in
figure 5. It defines that all the edges generated by the sub-

division should be of equal length. The other two types can
be used to generate more smoother behavior during tessel-
lation, as they will just divide edges by a set amount but
also change the length of each of the segments. It works
with two different values, an effective tessellation that is
generated by rounding and used to calculate the number of
subdivisions and a factional value, that is the value before
rounding. Using these values, the spacing between the dif-
ferent points are calculated, the outer most edge will be of
different length to the others, as it will be shorter depend-
ing on the difference between the effective tessellation and
the fractal value. The difference between odd and even
spacing is in the rounding methods used, both methods
round up, but odd will round up to the nearest odd value
and even to the nearest even value. [2]

For the winding order, this is simple stated as either
clockwise or counterclockwise, so that it can be used in
later stages for effects like culling of the patch. The output
of the primitive generation is abstract patches that are send
to the evaluation shader. It should be noted that each patch
is defined by barycentric coordinates, this becomes im-
portant during the evaluation.

2.4 Evaluation Shader

The final part of tessellation in OpenGL takes part in the
evaluation shader, this works much like the vertex shader,
the difference being that it also transforms all the new ver-
tices generated by the primitive generator and needs to
place these in world space.

As described above the abstract patches from the primitive
generator are described in barycentric coordinates, this
displayed in figure 6. The newly generated vertices will
have a position vector also in this coordinate system, so to
generate an even tessellation, it position can be calculated
by multiplying the position vector with each of the control
points for the abstract patch. The same calculations can be
used for the generation of colors, texture coordinates
and/or normal vectors as these can also be part of the in-
formation stored in the control points.

Figure 6: A display of the architecture for a triangle.

It is also in this shader that offsets can be applied by mak-
ing use of different techniques like having a displacement
map or just moving points along with their normal vector.

It should be noted that where the view projection that
would normally be applied in the vertex shader, it should
instead be applied in the evaluation shader, since all the
newly generated vertices also should be multiplied by it
and having it in both shaders would apply the view projec-
tion twice to the control points of the patches.

3 Project

This project has been focusing on implementing tessella-
tion in OpenGL by programming both a tessellation con-
trol shader and a tessellation evaluation shader. It has been
tested on a NVIDIA GeForce RTX 2070 graphics card and
are using OpenGL 4.0 as this is the lowest version needed
for implementing tessellation [2]. Much of the codebase is
reused from hand ins and exercises throughout the course
and therefore only code that is relevant for tessellation has
been commented and code that have new or major changes
from the original.

A focus point of the project has been to not hardcode the
tessellation variables, but instead give the user the ability
to manipulate them to allow for a better understanding of
tessellation. Therefore, the program contains a menu, that
can be opened using the spacebar, that allows the user to
modify different values like tessellation levels and the use
of level of detail, to see the effect tessellation can have on
a model. The project and menu can be seen in figure 7.

Figure 7: A display of the project with default settings.

The program makes use of a simple triangle model to show
the effects of the different tessellation techniques in real
time. At the start default values has been selected as the
least complex calculations and techniques. A combination
of vertex shader and fragment shader, without tessellation
shaders have also been added to compare with the changes
that tessellation applies. A polygon mode has also been
added to better show the effects of tessellation without
having to transform the positions using normal vectors, as
a flat surface will be visually alike with or without tessella-
tion. This is what is displayed in figure 4.

3.1 Level of Detail

The program has implemented a simple level of detail
technique that will change the tessellation levels in the
control shader depending on the distance from the camera.
This is just a simple implementation and does not make
use of normal vectors, that could help with showing more
depth in the model as described in section 1.

The inner tessellation level is determined by the highest
outer level, as this would describe the players distance
from the model.

3.2 Tessellation Spacing

As described in section 2.3 there are different tessellation
spacing types. This implementation contains all the differ-
ent types with the equal spacing selected by default. Be-
cause of spacing needed to be defined when evaluation
shaders are implemented, there was a need to have three
different evaluation shaders, one for each spacing type.
Other then that, the shaders are identical. Figure 8 displays
the effects of even spacing, where the triangles are of
many different sizes.

Figure 8: A display of even spacing.

3.3 Tessellation Levels

Section 2.2 has a description of the tessellation levels. The
program allows for the user to manipulate all the inner and
outer levels available to better study the effect of each of
them. Note that this does not work with level of detail, as
that will override the levels with the dynamically calculat-
ed levels. Because fractal spacing can use decimal values,
all the levels are saved as floating-point numbers. Though
OpenGL automatically rounds up levels when doing equal
spacing, so that is not a problem.

Figure 9: A display of edges and control point naming. [3]

3.4 Vertex Weights

These weights have little to do with tessellation but are
added in the evaluation shader, to be able to make more
disformed figures, to show that there is a lot of control to
be had when positioning vertices and they do not have to
be placed in the perfectly central of the patch. Each of the
values correspond to a specific vertex in the barycentric
coordinates and follows the structure of figure 9. Steps
have been taken during the implementation to make the
overall triangle displayed just as this figure, to make it
easier to follow for a user.

3.5 Normal Vectors

The last part of the program is focus on the use of normal
vectors to displace vertices on the surface. Two different
sets of normal vectors have been implemented for the
model, the first to check if normal vectors worked correct-
ly and the second one to show of what normal vectors can
be used for. A multiplier has also been added here to con-
trol how much a vertex should follow their normal vector.
This is just a very simple calculation with the normal vec-
tor multiplied with the value being added to the vertex
position.

The first set is called Z-align and have all the control
points implemented with normal vectors along the Z-axis.
This just makes the model move back and forth in space
without showing many properties. Though it shows that all
vertices generated by tessellation moves perfectly along
with this as there is no displacement.

The second set is called Spreading and have the normal
vectors of the control points in different directions. This
will bring out displacement in the model, as the interpola-
tions of tessellated vertices now have different normal vec-
tors and will move around in space differently. The effect
of this is shown in figure 10. It can also be seen from this
figure that now the changes from tessellation can be seen
without the use of the polygon mode, since it’s no longer
just a flat surface.

Figure 10: A display of a curved model made following the

interpolated normal vectors.

4 Conclusion

Overall, the project has achieved what it was meant to
do, by implementing both a tessellation control shader
and a tessellation evaluation shader, both with multi-
ple values that could be modified during the runtime
of the application. Though some of the more advanced
aspects of tessellation could have been explored more
in the implementation and the implemented techniques
could have been tested on more complex models.

The other aspect of this project was to acquire
knowledge on a topic within the subject of graphics
programming. This report contains all this knowledge
by explaining both what tessellation is and how it
works within the specifics of OpenGL. Of cause other
uses of tessellations are available, though they will
build upon the foundation of what has been described
in this paper.

5 Future Work

As stated in the conclusion above there are still ele-
ments of the theory that have not been implemented
into the project itself. Though it all builds on the ele-
ments that have been implemented already.

In section 2.1 the different abstract patch types have
been described. Though both quads and isolines have
not made it into the project. Since these aspects are
being explicitly described in the evaluation shader and
with the already heavy use of three different shaders
to handle spacing. Each of these would have the same
problem and would result in the use of nine different
evaluation shader. Though reading I have also not
been able to find a proper use of iso-lines. Except a
single paper about the use of tessellation for creating
splines [5].

While there are differences between the different ab-
stract patch types, they work in much of the same way
and should be quite easy to understand, with
knowledge about how the triangle patch works.

The project also only works on a single triangle with
three pre-defined vertices used for control points, this
works well for illustrating the different aspects availa-
ble in the project. Though it would have been fascinat-
ing to also explore other models, some with just a few
more vertices and some could be quite expansive. This
would also have opened for exploring the different
patch sizes and what could be done to patches in the
control shader. Though again I have been unable find
papers describing how to do this in practice.

The last element to explore would be to work more
with the normal vectors. Unlike the previous aspects
of this section, this is a very central part of tessella-
tion. Multiple of the sources linked to in this paper
makes use of normal vectors to make their models
look less flat, e.g., though displacement maps.

References

[1] Gregory, Jason. 2019. Game Engine Architecture. 3rd

Edition CRC Press. Chapter 11.

[2] Tessellation (OpenGL Wiki). [ONLINE] Available at:

https://www.khronos.org/opengl/wiki/Tessellation

[Accessed 03 January 2022]

[3] Basic Tessellation. [ONLINE] Available at:

https://ogldev.org/www/tutorial30/tutorial30.html

[Accessed 04 January 4, 2022]

[4] Burke, Steve. 2015. Defining Tessellation and Its

Impact on Game Graphics (with Epic Games)

[ONLINE] Available at:

https://www.gamersnexus.net/guides/1936-what-is-

tessellation-game-graphics [Accessed 05 January

2022]

[5] Rasterization of Parametric Curves using Tessellation

Shaders in GLSL. 2015. [ONLINE] Available at:

https://computeranimations.wordpress.com/2015/03/1

6/rasterization-of-parametric-curves-using-

tessellation-shaders-in-glsl/ [Accessed 05 January 5,

2022]

https://www.khronos.org/opengl/wiki/Tessellation
https://ogldev.org/www/tutorial30/tutorial30.html
https://www.gamersnexus.net/guides/1936-what-is-tessellation-game-graphics
https://www.gamersnexus.net/guides/1936-what-is-tessellation-game-graphics
https://computeranimations.wordpress.com/2015/03/16/rasterization-of-parametric-curves-using-tessellation-shaders-in-glsl/
https://computeranimations.wordpress.com/2015/03/16/rasterization-of-parametric-curves-using-tessellation-shaders-in-glsl/
https://computeranimations.wordpress.com/2015/03/16/rasterization-of-parametric-curves-using-tessellation-shaders-in-glsl/

